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ABSTRACT
Moving Target Defense (MTD) has emerged as a newcomer into
the asymmetric field of attack and defense, and shuffling-based
MTD has been regarded as one of the most effective ways to miti-
gate DDoS attacks. However, previous work does not acknowledge
that frequent shuffles would significantly intensify the overhead.
MTD requires a quantitative measure to compare the cost and ef-
fectiveness of available adaptations and explore the best trade-off
between them. In this paper, therefore, we propose a new cost-
effective shuffling method against DDoS attacks using MTD. By
exploiting Multi-Objective Markov Decision Processes to model the
interaction between the attacker and the defender, and designing
a cost-effective shuffling algorithm, we study the best trade-off
between the effectiveness and cost of shuffling in a given shuffling
scenario. Finally, simulation and experimentation on an experi-
mental software defined network (SDN) indicate that our approach
imposes an acceptable shuffling overload and is effective in miti-
gating DDoS attacks.

CCS CONCEPTS
• Networks → Denial-of-service attacks; • Security and pri-
vacy → Formal security models.
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1 INTRODUCTION
Due to the static nature of a cyber system, an attacker can not only
perform reconnaissance on the target cyber system (i.e., scan the
attack surface of the target system for possible vulnerabilities), but
also launch an attack at his chosen time point to exploit the discov-
ered vulnerabilities [1]. The traditional strategy to defend the cyber
system is to detect the unique behaviors of the attack. However, this
strategy relies on knowing the characteristics of attacks. It becomes
inefficient and insufficient when facing more advanced attacks with
unknown behavioral patterns, which is common in today’s cyber
attacks. To counterbalance the advantage of attackers by reconnais-
sance, Moving Target Defense (MTD) [2, 3] has emerged as a good
mitigation technique that alters the static nature of cyber systems.
MTD regularly changes certain aspects of the system to decrease
an attackers’ understanding of the target system. Any discovered
vulnerabilities may disappear after enough time has passed, thus
reducing the chance of a successful exploit. Essentially, MTD can
increase the attack cost/complexity, and decrease the likelihood of
successful attacks [4].

Due to the frequent shuffling of attack surfaces by MTD, it be-
comes far more difficult for an adversary to launch a successful
attack. But, its frequent shuffling can also have negative effects on
the protected system by reducing the quality of service (QoS) on top
of the extra costs associated [5]. In addition, when a random move
transfers the attack surface to a new surface, there’s a possibility
that the new surface is more vulnerable than the previous surface.
Therefore, it is necessary to assess both the cost and the effective-
ness of available shuffling methods to find a balance between the
two.

In this paper, a new cost-effective shuffling method is proposed
to resist DDoS attacks using MTD. First, we describe a threat model
to characterize the behavior of the attackers and defenders. Then,
in order to model the interaction between the attacker and the
defender as a game, we exploit theMulti-ObjectiveMarkovDecision
Processes [6] to model the state transition of a system.Moreover, we
will discuss the game process, the definition of the game payoff, and
the generation of the game strategy to guide the defender to analyze
the impact on the shuffle by the payoff of strategy. After that, we
will propose the shuffling scenario and present our cost-effective
shuffling algorithm (CES). The goal of CES is to find the optimal
strategy for a sequence of shuffling decisions, which can reach the
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best trade-off between the effectiveness and the cost of shuffling.
Our simulation and experiment results have shown that CES can
effectively shuffle with limited cost to the SDN and performs well
in resisting DDoS attacks.

The remainder of this paper is organized as follows. We discuss
the related work in Section 2 and propose the threat model in
Section 3. Model specification and detailed analysis of the game are
presented in Section 4. Description of the shuffling scenario and
algorithm are given in Section 5. The performance of our proposed
method is evaluated via simulation and experiment in Section 6.
Finally, we conclude the paper in Section 7.

2 RELATEDWORK
Existing research on MTD shuffling can be classified into random,
event-based, and hybrid mutation. Early research on random muta-
tions [7–10] stipulate that each move in a random mutation occurs
after a set time interval where the interval could be random or
periodic. However, the time interval would be the only information
needed in this case. In contrast, the moves in event-based muta-
tions [11–13] require extra information such as security policies
and alerts. Upon receiving an external stimulus, the attack surface
would be modified in order to mitigate the event. Hybrid mutations
offer a mixed approach with combine many aspects of random and
event-based mutations. Several researchers have proposed hybrid
MTD models, such as Kampanakis et al. [14], who proposed a kind
of network-level MTD techniques consisting of a hybrid mutation
engine based on SDN. Huang and Ghosh [15] also proposed a sys-
tem of servers where those offline could rotate in to replace those
online, either at certain intervals or through certain events.

Some research was proposed to evaluate MTD mechanisms by
quantifying the changes on the attack surface and assessing the
cost and effectiveness of the mutation [16, 17]. In order to assess
the effectiveness of MTD techniques, Hong and Kim [18] devel-
oped a hierarchical attack representative model which is rather
more flexible and scalable than common attack graphs. Bopche
and Mehtre [19] employed classical graph distance metrics such
as maximum common subgraph (MCS) and graph edit distance
(GED) to measure temporal changes in attack surface of dynamic
networks. Hong et al. [20] also incorporated MTD techniques into
a temporal graph-based graphical security model and developed a
new set of dynamic security metrics to assess and compare their
effectiveness. Moreover, an evaluation model of MTD effectiveness
based on system attack surface (SAS) was proposed by Xiong et
al. [21], and Zhang et al. [22] proposed an efficient strategy selec-
tion for MTD, where the analytic hierarchy process (AHP) was
employed to quantify the factors affecting the attack and defense
costs.

In addition, some researchers adopted game theory as a tool
to model the interaction between the attacker and the defender
and determine the selection of MTD moving strategy. Prakash and
Wellman [23] employed empirical and game theoretic techniques
to examine the interaction between the attacker and the defender
and demonstrated that the efficiency of MTD is sensitive to its de-
tection capability. Although they realized that security alerts play
an important role in effective move selection, the cost of the moves
was ignored. Feng et al. [24] proposed a Bayesian Stackelberg game

that models the joint migration and signaling strategies for the
defender in the face of a strategic and rational attacker and demon-
strated that MTD can be improved through strategic information
disclosure. Markov Decision Process(MDP) based approach has
been utilized to analyze and further select optimal policies by many
researchers [25–27], while Lei et al. [28] proposed a novel of in-
complete information Markov game theoretic approach to strategy
generation. Although the proposed model has been examined via
theoretical analysis and numerical study, the effectiveness in real
world is still uncertain.

3 THREAT MODEL
In this section, we describe a threat model to characterize the behav-
ior of attackers and moving target defense mechanism. We assume
a threat model in which the adversary has some rational attack
strategies and needs to explore the target before strategy execution.
The adversary may also have multiple network resources to scan
and probe, although they may not utilize all of it when attacking
targets. We also assume that the defender might take advantage of
some defense mechanism to prevent the target system from being
compromised. This theoretical framework follows the state-of-the-
art MTD model proposed by Lin et al. [29].

3.1 Attacker Behavior
A strategic and rational attacker, with the objective of attacking
the confidentiality, integrity and availability (CIA) of the attack
target, always needs to obtain some sensitive parameters about the
defenders before launching a successful attack. To gain knowledge
of the defenders, an attacker may take the time, computing, and
monetary resources to explore the protected system. Once the at-
tacker determines that he has obtained enough information about
the defender, the attack will be launched with characteristics that
are systematically decided by the current system state as well as
the defense actions. The whole procedure including probing and
launching the attack incurs significant cost. For example, the attack
cost of launching a DDoS attack will be related to the resources
consumed by previous IP address scanning, stealthy port scanning
and the amount of utilized clients when the attack happens.

3.2 Defense Mechanism
In order to guard a system from being hacked or destroyed, the
defender has to collect the information about the whole system
and find any suspicious behavior that may lead to risks. Using
moving target defenses to safeguard the system, the defender needs
to make shuffles to change the attack surface as well as taking other
necessary measures against an attacker. For each shuffle, it incurs
a shuffle cost due to the utilized computing and network resources.
In detail, this paper is focused on shuffle based MTD techniques
that can be implemented at network level.

Therefore, the defensemechanism is defined as follows. Once one
or several hosts in the protected system are compromised, in order
to prevent the follow-up, the defender will shuffle the exploited
hosts by the following defense types.
• Port hopping: Dynamic and continuous change of port number

of a particular service.
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• IP hopping: The defender changes the IP address of a VM
dynamically and incessantly.
•Migration: The defender migrates the applications or services

under attack between VMs.

3.3 Objective
The objective of this paper about cost-effective shuffling MTD
method is to investigate the optimal way for a defender to make
decisions while taking into account both the shuffling/attack cost
and effectiveness between the defender and the attacker. It is impor-
tant to maximize the shuffling effectiveness and minimize the cost
while restricting the attacker’s payoff and forcing them to terminate
the attack. Moreover, it is possible for a defender to endure risks
without shuffling, if the shuffling cost is high while the effective-
ness is low. We seek to examine what is the best way to make the
shuffling decision and how to reach the best trade-off between cost
and effectiveness.

4 GAME MODEL
Many real-world decision problems have multiple objectives. For
example, for a computer network we may want to maximize per-
formance while minimizing power consumption [6]. The field of
multi-objective decision making addresses how to formalize and
solve decision problems with multiple objectives.

In the following, we exploit Multi-Objective Markov Decision
Processes (MOMDP) to model the interaction between the attacker
and the defender as a game, with the objective of maximizing the de-
fender’s payoff and minimizing the attacker’s payoff. The shuffling
selection process can be modeled as a sequential game in which the
defender is the leader and the attacker is the follower. A MOMDP
for two objectives in our case is a tuple (t, S,O,A,D,R,C,γ ), where:
• t is the time step of a game, and t ∈ {0, ...,T } where T is the

time horizon.
• S represents a finite set of states, including all possible attack

surfaces that the protected system could experience and let St be
the state of the system at time step t .
• O represents the status of services or VMs by defender’s ob-

servation with confidence coefficient π ∈ [0, 1].
• A denotes a finite set of attacker actions, and let At be the

attacker’s action at time step t .
• D denotes a finite set of defender actions, and let Dt be the

defender’s action at time step t .
• R: S ×A(D) × S → R is a rewarding function that maps a state

and an action to a reward for the player.
• C: A(D) → C assigns a cost to each action the players take.
• γ is the discount factor where γ ∈ (0, 1].
In this game, the defender adopts an MTD strategy by migrating

the resource across the network to make it difficult for the attacker
to identify the real location of the resource, while the attacker
may observe the defender’s actions by monitoring network traffic.
Knowing this strategy (but not its realization), the attacker then
determines against which VM to conduct DDoS attack and which
IP address to choose. The defender can also obtain the state of the
protected system and attacker’s actions by observation. Thus, both
will play their best strategy to act against their opponent.

Algorithm 1 State Transition Function
Input:

The system state at time step t , St ;
The observation by defender at time step t , Ot ;
The defender action at time step t + 1, Dt+1;
The attacker action at time step t + 1, At+1;

Output:
The system state probability distribution at time step t +1, St+1
with probability p;

1: if Ot (v) ⊆ St (v) then
2: At+1(v) ← 1;
3: if v ∈ Dt+1(v) then
4: St+1(v) ← 0;
5: else
6: with probability p(v), St+1(v) ← 1;
7: end if
8: else
9: St+1(v) ← St (v);
10: if v ∈ Dt+1(v) and v ∈ At+1(v) then
11: St+1(v) ← 0;
12: else
13: if v < Dt+1(v) and v ∈ At+1(v) then
14: with probability p(v), St+1(v) ← 1;
15: else
16: for v < Dt+1(v) and v < At+1(v) do
17: with probability p(v ′,v), St+1(v) ← 1;
18: end for
19: end if
20: end if
21: end if

4.1 Game Process
At the beginning of the game, S0, A0 and D0 need to be initialized
with ∅. Based on our assumption, the attacker is fully aware of
system state at every time step, whereas the defender only knows
the initial state S0 and needs to observe the system to obtain the
subsequent states. Thus, we also set O0 = ∅.

At each time step t + 1 ∈ {1, ...,T }, the attacker can choose any
VM v ∈ V to conduct DDoS attack with a success probability p(v),
and p(v,v ′) from VM v to v ′ if the attacker has taken control of
v. Simultaneously, the defender decides which VMs to shuffle to
prevent the attacker from further intruding.

After the initialization, the game proceeds in discrete time steps,
t + 1 ∈ {1, ...,T }, with both players aware of the current time.
The following sequence of game events between the defender and
attacker occurs at each time step t + 1.

(1)The attacker observes St , while the defender observes Ot .
(2)The attacker and defender select their actions At+1 and Dt+1

according to their respective strategies at the same time.
(3)The system transits to its next state St+1 according to the

transition function(Algorithm 1).
(4)The attacker and defender evaluate their rewards and costs

for the time step, respectively.
(5)The attacker and defender enter the next time step unless the

time step T has arrived.
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4.2 Game Payoff
As discussed in Section 4.1, St is a system state at time step t , when
the attacker playsAt , the defender playsDt and the previous system
state is St−1. We denote by HT = {(S0,A0,D0), ..., (ST ,AT ,DT )}
the game history, which consists of all system states and players’
actions at each time step.

After both players have taken actions in the game, each of them
will get either a negative or a positive return. It is the quantita-
tive assessment of each player’s action which represents the game
payoff. In MTD, both the attacker and the defender need to take
the payoff into consideration when they make attack or defense
decisions. Each player then receives a payoff function and aims to
increase their own expected payoffs.

With respect toHT , the defender and the attacker’s payoff values
of two objectives, which include goal rewards and action costs, can
be separately presented as follows:

Pd (HT )=
T∑

t+1=1
γ t


∑

St+1(v)=0
Rd (v)−

∑
v ∈Dt+1

Cd (v)

 (1a)

Pa (HT )=
T∑

t+1=1
γ t


∑

St+1(v)=1
Ra (v)−

∑
v ∈At+1

Ca (v)

−
∑

v<Dt+1∩v<At+1

Ca (v)


(1b)

4.3 Game Strategy
As discussed above, both players will play their best strategies
to act against the opponent and aim to maximize the value of
payoff function P , which depends on the distribution of HT . To
analyze the game process more meticulously, heuristic strategies
for both players are proposed in this section to depict detailed
actions between them.

4.3.1 Attacker Strategy. For the attackers, at time step t + 1, based
on St , they need to consider only VM v ∈ V that can change the
target system state at time step t + 1. Hence, we denote by α(St )
the potential attack tarдet at time step t + 1 which represents this
set of VMs and consists of two parts as follows:

(1)Target on VM v directly to launch an attack.
(2)Target on another VM v ′ with probability to reach v .
Based on the two parts of VMs discussed above, we obtain α(St )

defined as follows:

α(St )= {v ∈V |St (v)=0}

∪
{
v ′ ∈V |St (v

′)=0,p(v ′,v)>0
} (2)

Since the attacker is rational in our assumption, the attacker
chooses actions based on quantitative assessment of the game pay-
off with α(St ). Intuitively, the value of an attack payoff quantita-
tively represents what the attacker can obtain by this attack at the
time step.

The main idea of this game strategy is to choose the attack
target by which the attacker’s payoff could be maximized based on
previous system state at each time step. However, due to lack of
knowledge about the defender’s action at this time step, the payoff

Algorithm 2 Attack Strategy Generation
Input:

The system state at time step t , St ;
Output:

The attacker action at time step t + 1, At+1;
1: Initialize Pa (v) ← 0;
2: for St (v) = 0,v ∈ V do
3: Calculate Ra (v),Ca (v);
4: if γ t (p(v)Ra (v) −Ca (v)) > Pa (v) then
5: Pa (v) ← γ t (p(v)Ra (v) −Ca (v));
6: Update v ∈ Pa (v);
7: for St (v ′) = 0,v ′ ∈ V do
8: Calculate Ra (v ′),Ca (v ′);
9: if γ t (p(v ′,v)Ra (v ′) −Ca (v ′)) ≤ Pa (v) then
10: Retain v ∈ Pa (v);
11: else
12: Pa (v) ← γ t (p(v ′,v)Ra (v ′) −Ca (v ′));
13: Update v ∈ Pa (v);
14: end if
15: end for
16: end if
17: end for
18: if Pa (v) ≤ 0 then
19: At+1 ← ∅;
20: else
21: At+1 ← {v ∈ V |St (v) = 0,v ∈ Pa (v)};
22: end if
23: return At+1

the attacker calculates is biased for their unilateral action. This
attack strategy generation is illustrated in Algorithm 2.

4.3.2 Defender Strategy. For the defenders, since they do not know
the true system states at each time step, it is crucial for them to
reason through the possible system states based on their observa-
tions before committing to a defensive action. As mentioned in the
Section 4.1, in our game, the defender only knows the initial system
state S0, where S0(v) = 0 for each v ∈ V .

The defender needs to take both their observation and their
assumptions about the attacker strategy into consideration to form
an understanding of the current system state. Similarly, we denote
by β(Ot ) the potential de f end tarдet at time t + 1 as follows:

(1)Target on VM v according to defender’s observation Ot .
(2)Target on VM which is not in Dt .
According to the above analysis, we obtain β(Ot ) defined as

follows:
β(Ot )= {v ∈V |Ot (v)=1}

∪ {v ∈V |Ot (v)=0 ∩v <Dt (v)}
(3)

As a rational defender, before making decisions, he also needs
to assess the game payoff of imminent actions with β(Ot ). The
quantitative assessment of the game payoff for the defender repre-
sents the quality of the strategy to fight against attacker’s malicious
actions at that time step. Essentially, the higher the value of the de-
fense payoff is, the safer the protected system will be. This defense
strategy generation is illustrated in Algorithm 3.
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Algorithm 3 Defend Strategy Generation
Input:

The observation by defender at time step t , Ot ;
The defender action at time step t , Dt ;
The number of VMs, n;

Output:
The defender action at time step t + 1, Dt+1;

1: Initialize Pd (v) ← 0;
2: for Ot (v) = 1,v ∈ V do
3: Calculate Rd (v),Cd (v);
4: if γ t (π (v)Rd (v) −Cd (v)) ≤ Pd (v) then
5: Retain v ∈ Pd (v);
6: else
7: Pd (v) ← γ t (π (v)Rd (v) −Cd (v));
8: Update v ∈ Pd (v);
9: end if
10: end for
11: for Ot (v) = 0 and v < Dt (v) do
12: Calculate Rd (v),Cd (v);

13: if γ t (
π (v)Rd (v)

n − 1
−Cd (v)) ≤ Pd (v) then

14: Retain v ∈ Pd (v);
15: else

16: Pd (v) ← γ t (
π (v)Rd (v)

n − 1
−Cd (v));

17: Update v ∈ Pd (v);
18: end if
19: end for
20: if Pd (v) ≤ 0 then
21: Dt+1 ← ∅;
22: else
23: Dt+1 ←

{
v ∈ V ∩v ∈ Pd (v)

}
;

24: end if
25: return Dt+1

5 COST-EFFECTIVE SHUFFLING METHOD
As discussed above, we give the description of the game model
and describe the game process and game strategies between both
the attacker and the defender. However, the game may reach an
equilibrium which is undesirable for the defender. To make the
game more beneficial for the defender and reach the best trade-
off between shuffling cost and defense effectiveness, we propose
a cost-effective shuffling method, which consists of threat model
and game theory, to adopt different shuffling types under different
conditions.

5.1 Shuffling Scenario
When a service or a VM is under DDoS attacks, the defender con-
trols and relocates the ports, IPs or VMs in use from extra resources.
Nevertheless, additional overhead is incurred in the procedure of a
shuffle. Therefore, our goal is to balance the defense effectiveness
and the overhead whereas restricting the attacker’s payoff by the
implementation of a shuffling method.

To increase the applicability of our shuffling method and ex-
pound the details more clearly, we make some assumptions and
propose the shuffling scenario as follows.

Given: a set of q users and a group of n VMs with r network
segments and u ports of equal resources form users, wherem×n =
q, r ⩽ n

Output:three sequences ofmatrices (X0,X1, ...,XT ),(Y0,Y1, ...,YT ),
(Z0,Z1, ...,ZT ), whereXt ∈ {0, 1}r×n ,Yt ∈ {0, 1}u×n ,Zt ∈ {0, 1}q×n ,
such that

n∑
i=1

xti j ⩾ 1 j = 1, ..., r ; (4a)

r∑
j=1

xti j = 1 i = 1, ...,n; (4b)

n∑
i=1

yti j ⩽ n j = 1, ...,u; (4c)

n∑
i=1

zti j = 1 j = 1, ...,q; (4d)

q∑
j=1

zti j =m i = 1, ...,n; (4e)

The matrix Xt represent the IP shuffling decision at time step
t , where binary variable xti j indicates that whether the i-th VM
is assigned to j-th network segment. Hence, Equation 4a states
that each network segment owns at least one VM, and Equation 4b
ensures that each VM is assigned to only one network segment.
Similarly, The matrix Yt represent the port shuffling decision at
time step t , where binary variableyti j indicates that whether the i-th
VM is assigned to j-th port. Hence, we can easily get Equation 4c
which indicates that at most n VMs share the same port number.

As the VMmigration is the third shufflingmechanism, the matrix
Zt denote the overall condition of VM migration at time step t and
the binary variable zti j represents that whether the j-th user is
assigned to i-th VM. Based on Equation 4d and Equation 4e, we can
conclude that each user is assigned to only one VM and each VM
can only be allowed to servem users.

5.2 Cost-Effective Shuffling Algorithm
In the following, we first present a cost-effective shuffling algorithm
to consider the cost and effectiveness of shuffling, with the two
objectives of maximizing the payoff that the defender may obtain
and minimizing the payoff which the attacker can get.

Specifically, in the initial assignment step , q users, r network
segments and u ports are randomly assigned to n VMs in our shuf-
fling scenario, whereas the t-th shuffling step iteratively reduces
the number of the crashed VMs. Afterwards, the system state at
time step t represents the assignment of users, network segments,
ports in the system and the condition of crashed VMs through state
transition function (Algorithm 1), which requires the defender’s
and attacker’s strategies as the input. As discussed in Algorithm 2
and Algorithm 3, the generation of strategies is directly related to
the rewards and costs of their actions.

Session: Frameworks and Methods MTD’19, November 11, 2019, London, United Kingdom

61



Hence, the defender’s rewarding value Rdt+1 and cost value Cdt+1
at each time step t with state transition function STF represent the
effectiveness and cost of a shuffle as follows:

Rdt+1 =
∑

St+1(v)=0
Rd (v)

=
∑
v ∈V

STF (St (v) − St+1(v))
(5a)

Cdt+1 =
∑

v ∈Dt+1

Cd (v) =
∑

v ∈Dt+1

(w1

r∑
j=1
|xt+1v j − x

t
v j |

+w2

u∑
j=1
|yt+1v j − y

t
v j | +w3

q∑
j=1
|zt+1v j − z

t
v j |)

(5b)

Similarly, the attacker’s rewarding value Rat+1 and cost value
Ca
t+1 respectively represent the reward obtained from the VM crash

and the cost caused during the whole attack stages, which can be
calculated by follows:

Rat+1 =
∑

St+1(v)=1
Ra (v)

=
∑
v ∈V

STF (St (v) − St+1(v))
(6a)

Ca
t+1 =

∑
v ∈Dt+1

Ca (v) +
∑

v<Dt+1∩v<At+1

Ca (v)

=
∑

v ∈Dt+1

w3 +
∑

v<Dt+1∩v<At+1

(w1 +w2)
(6b)

Regarding the defender’s shuffling effectiveness, the rewarding
function in Equation 5a represents the status transition from time
step t to t + 1. In terms of IP hopping, port hopping and migration
cost in a shuffle, the cost function in Equation 5b represents the
cost of shuffling from time step t to t + 1, wherew1,w2,w3 is the
weights assigned by the network operator.

Instead, the reward function of the attacker in Equation 6a in-
dicates that the target VM has been crashed at time step t + 1.
Moreover, the attacker’s cost value in Equation 6b can be divided
into two parts: the cost occurs when implementing the attack to
the target VM and the cost spends during the scanning and probing
stages. Hence, it can be calculated by the number of VMs, ports and
IPs, which meet the strategies of the defender and attacker, using
the assigned weightsw1,w2,w3 as well.

Thereout, we can obtain the payoff values of the defender and
attacker across the whole game history, using Equation 1a-1b, Equa-
tion 5a-5b and Equation 6a-6b in our shuffling scenario. With the
objective of maximizing the defender’s payoff and minimizing the
attacker’s payoff, we utilize the difference between the payoff val-
ues to find the optimal trade-off between the effectiveness and cost
among both players.

However, in an actual scenario, not all users are online at the
same time and unnecessary shuffling costs are generated during
each time step. In order to decrease the extra costs, we denote
the number of online users in one VM by η to guide the defender
to make his decision in a more cost-effective manner, where 0 ⩽
η ⩽m. Thereout, CES (Algorithm 4) aims to significantly reduce
the unnecessary cost, restrict the attacker’s payoff, and find the

Algorithm 4 Cost-Effective Shuffling Algorithm(CES)
Input:

The state of VMs by defender’s observation at time step t ,
{Ot (v1),Ot (v2), ...Ot (vn )};
A binary r × n-matrix Xt ;
A binary u × n-matrix Yt ;
A binary q × n-matrix Zt ;
The number of online users in each VM,
{ηt (v1),ηt (v2), ...ηt (vn )};

Output:
A binary r × n-matrix Xt+1;
A binary u × n-matrix Yt+1;
A binary q × n-matrix Zt+1;

1: for Ot (vi ) = 1, 1 ⩽ i ⩽ n do
2: if ηt (vi ) = 0 then
3: Set xt+1i , = 0,yt+1i , = 0, zt+1i , = 0;
4: else
5: if 0 < ηt (vi ) ⩽ [m2 ] then
6: Calculate Rd (vi ),Cd (vi ),Ra (vi ),Ca (vi );
7: Find maximum Pdt+1(vi ) − P

a
t+1(vi );

8: Set xt+1i , ,y
t+1
i , , z

t+1
i , ;

9: else
10: Set zt+1i , = 0;
11: Calculate Rd (vi ),Cd (vi ),Ra (vi ),Ca (vi );
12: Find maximum Pdt+1(vi ) − P

a
t+1(vi );

13: Set xt+1i , ,y
t+1
i , ;

14: end if
15: end if
16: end for
17: return all xt+1i , j ∈ Xt+1,y

t+1
i , j ∈ Yt+1, z

t+1
i , j ∈ Zt+1

optimal shuffling decisions for the defender at each time step. In
CES, Line 1 has a holistic view of the crashed VMs based on the
current observation of the system. Then, Line 2 judges whether the
current VM has online users and no shuffling decisions are given
in Line 3 if there is no user. Moreover, if existing online users, a
previous threshold has been set in Line 5. According to both players’
payoff values and the average number of users in each VM, different
shuffling decisions are made in Line 6-8 and Line 10-13 separately.
Finally, shuffling decisions of all VMs for the next time step are
returned in Line 17.

6 EVALUATIONS AND RESULTS
In this section, we evaluate and analyze the cost-effectiveness and
performance of the proposed CES algorithm against DDoS attacks
in simulation and experiment. First, we describe the simulation
settings and compare our CES algorithm with other existing shuf-
fling algorithms. Then we introduce the experimental settings and
implementation of the shuffling scenario in full. Finally, we measure
the cost and effectiveness of our proposed CES algorithm in our
shuffling scenario with comparisons to a non-shuffling strategy and
a random shuffling strategy.
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Figure 1: Comparison of CES,RRT and CSA in the effectiveness, cost and payoff at different time steps.
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Figure 2: Comparison of CES,RRT and CSA in the effectiveness, cost and payoff with different number of average online users
in one VM.

6.1 Simulation
In the following, we compare the proposed algorithm CES with RRT
(Renewal Reward Theory) [30] and CSA (Cost-effective Shuffling
Algorithm) [29] to evaluate the effectiveness and cost of shuffling.
First, to find out the whole system state transition probability, we
implement Algorithm 1 and execute it 10000 times with pre-defined
parameters (m,n,q, r ,u), where m = 20,n = 50,q = 1000, r =
20,u = 100.

Afterward, we compare the expected value functions of CES
with that of RRT and CSA in terms of effectiveness, cost, and payoff.
More specifically, the sum cost of single IP hopping, port hopping
and VM migration is set to 1, and the effectiveness of successfully
defending against an attack is calculated by 1.

Note that RRT is indifferent to the online users of the VMs,
and CSA randomly selects half of the users to migrate in a single
shuffle. Hence, for a more comprehensive comparison among these
algorithms, the parameter η is not fixed and ranges from 0 to 20 in
the simulation.

Fig. 1 and Fig. 2 first compare the three algorithms with different
time step and different number of average online users in one
VM, respectively. In Fig. 1, 1000 users are involved in the shuffling
scheme, and the system is allowed to allocate at most 50 VMs
for shuffling. In Fig. 2, there are 0 to 20 online users in one VM
at time step 10, when the theoretical values of effectiveness, cost
and payoff have levelled off. Fig. 1 demonstrates that the shuffling
approach performs better when the time step increases whereas Fig.
2 manifests that the advantage of the shuffling approach decreases
when the number of average online users in one VM increases.

Fig. 1(a) and Fig. 2(a) present the effectiveness of shuffling, Fig.
1(b) and Fig. 2(b) show the theoretical cost of shuffling, where
the weights for IP hopping, port hopping and migration shuffling
mechanisms are set to 0.2, 0.1 and 0.7. The simulation results in
Fig. 1(c) and Fig. 2(c) demonstrate that payoff of CES significantly
outperforms those of RRT and CSA, where the discount value γ is
set to 0.9.
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Figure 3: Implementation of the shuffling scenario in an experimental SDN network.

For the theoretical effectiveness of shuffling, Fig. 1(a) and Fig.
2(a) indicate that more effectiveness is gained when the time step
increases, and more users lead to less effectiveness for the given
time step. For the theoretical shuffling cost, Fig. 1(b) and Fig. 2(b)
indicate that the cost linearly decreases when the time step in-
creases and dramatically increases due to the increase of online
users. Nevertheless, in consideration of both the effectiveness and
cost, our proposed algorithm CES still outperforms RRT and CSA
in the payoff, respectively shown in Fig. 1(c) and Fig. 2(c).

The performance of shuffling in CES outperforms shuffling in
RRT and CSA due to two reasons. First, the state transition probabil-
ity of CES fully takes the correlation between states into considera-
tion, while there is no mention of transition probability in RRT, and
CSA only represents it as a function without detailed explanations.
Second, CES can utilize three kinds of defense mechanism, whereas
RRT and CSA can only utilize one. In detail, the underlying reason
is because only utilizing VM migrations might introduce more cost
if the system state is not so bad, while CES is capable of determining
the shuffling mechanism based on the game history and the number
of online users.

6.2 Experimental Settings
We implement the shuffling scenario in an experimental SDN [31]
testbed, which is shown in Fig. 3. The testbed that we use for exper-
imental analysis is composed of 5 Dell PowerEdge R720 servers and
a Dell PowerEdge R430 server. Each Dell PowerEdge R720 has 32 GB
of RAM, 4 TB hard disk storage and 12 core CPU. Dell PowerEdge
R430 has 16 GB RAM, 1 TB disk storage and 4 core CPU.

One single server is employed to construct the control platform,
using OpenDaylight [32] based SDN controller and PHP Laravel
web framework as front-end. For the virtual network deployment,
we utilize OpenStack [33] for computing and network resource
provisioning on the other five servers. The VMs are managed and

controlled by SDN controller via Open vSwitch [34]. A brief de-
scription of these existing techniques is given in Section 6.2.1-6.2.3.

In the implementation, we create 50 VMs which are equally
allocated to five servers, and each VM is assigned for at most 20
users with equal CPU and memory. In addition, the 50 VMs are
organized with different IP and TCP ports, where the attacker can
overload the VMs through DDoS attack tools.

6.2.1 OpenDaylight (ODL). ODL is a open source SDN controller
for customizing and automating networks of any size and scale.
The OpenDaylight Project arose out of the SDN movement, with
a clear focus on network programmability [32]. As a modular and
pluggable platform, ODL has the ability to build network functions
and services in an adaptable, flexible way.

6.2.2 OpenStack. OpenStack is a cloud operating system that con-
trols large pools of compute, storage, and networking resources
throughout a datacenter, it provides a virtual layer on physical
servers, decoupling underlying hardware from the workload. All
resources can be managed through a dashboard that gives adminis-
trators control while empowering their users to provision resources
through a web interface [33].

6.2.3 Open vSwitch (OVS). The most popular virtual switch im-
plementation OVS is heavily used in cloud computing frameworks.
It is designed to enable massive network automation through pro-
grammatic extension, while still supporting standard management
interfaces and protocols (e.g. NetFlow, sFlow, IPFIX, RSPAN, CLI,
LACP, 802.1ag) [34].

6.3 Results
First, we implement our CES algorithm and execute the program as
an application on the control platform. Then, we compare our cost-
effective shuffling method with non-shuffling and random shuffling
scenario in terms of overhead and performance.
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6.3.1 Overhead of SDN Controller’s CPU Load. In order to evaluate
the processing overhead on the SDN controller consumed by the
shuffling scenario, we use packets of different lengths to commu-
nicate and evaluate the influence to SDN controller’s CPU load
among different scenarios, which is shown in Fig. 4. The extra CPU
load is about 2.1 %-4.8 % compared to non-shuffling scenario and
about 1.2 %-2.2 % compared to random shuffling scenario. The extra
processing overhead on the SDN controller is not heavy, and is in
an acceptable level when CES has been deployed.

6.3.2 Overhead of the Shuffling Process. In order to evaluate the
overhead of each shuffle consumed, we combine the time consump-
tion of defense strategy generation (the running time of CES) and
shuffling procedure to represent the overhead of the whole shuffling
process, which is shown in Fig. 5.

In general, the results indicate that our approach in total re-
quires 3.82-3.97s in each shuffle, including the time consumption
of defense strategy generation and shuffling procedure. This is an
acceptable time for users to wait during the restart of services. The
time consumption of defense strategy generation increases when
the time step increases. However, as the time step increases, there
is a slight decrease on the time consumption of shuffling procedure.
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Figure 4: CPU load of SDN controller in different shuffling
scenarios.
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Figure 5: Time consumption of strategy generation and shuf-
fling procedure in each shuffle.

In addition, we compare the time overhead among three shuffling
scenarios. As seen in Fig. 6, non-shuffling method has no time
overhead and random shuffling spends 2.08-3.14s at each time step.
Though more time was consumed using the proposed cost-effective
shuffling method due to its defense strategy generation, it was still
able to keep the time-cost within 5 seconds.

6.3.3 Performance of Resisting DDoS Attacks. Finally, to evaluate
the capability of our proposed method to resist DDoS attacks, we
construct a typical SYN (synchronize) flood DDoS attack tool using
hping3 [35] and carry out DDoS attacks on the protected VMs one
by one in our shuffling scenario. Test results are shown in Fig. 7.

It is obvious that random and cost-effective shuffling methods
have a better performance than non-shuffling method in the ability
against DDoS attacks. It can be also seen from Fig. 7 that when
suffering from DDoS attacks, non-shuffling and random shuffling
methods were outperformed by our proposed cost-effective shuf-
flingmethod. CES was faster in recovering protected systems, better
at keeping system services online, and better at restricting the num-
ber of crashed VMs within the limited time steps.
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Figure 6: Comparison of time overhead in different shuf-
fling scenarios.
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Figure 7: Numbers of crashed VMs in different shuffling sce-
narios.
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7 CONCLUSIONS
This paper proposed a cost-effective method in the shuffling-based
moving target defense scenario against DDoS attacks. First, we
described a threat model to characterize the behavior of attackers
and defense mechanism. The interaction was modeled between the
attacker and the defender with Multi-Objective Markov Decision
Processes, and the game process at each time step was described in
detail with game payoff and strategy. Then, in order to maximize
the defender’s payoff and minimize the attacker’s payoff, the CES
algorithm was designed to seek the best trade-off between shuffling
cost and effectiveness in the proposed scenario.

The cost-effectiveness of the proposed CES algorithm was eval-
uated in simulation and outperformed other existing algorithms,
such as RRT and CSA. In addition, CES was deployed on an SDN
based shuffling scenario and evaluated in terms of overhead and
performance. The comparison with a non-shuffling approach and
a random shuffling approach showed several key advantages of
the proposed algorithm. First, the lower required CPU and time
overhead ensured the feasibility of the proposed method. Second, it
is evident that the deployment of CES was beneficial for improving
overall system security and for protecting the system against DDoS
attacks effectively.

The next step is to introduce other MTD technologies (such
as service hopping, path hopping, etc.) into defense mechanism
and fine tune the quantitative analysis of our research. In addition,
making full use of the characteristics of game theory, multi-stage
game between the attacker and the defender will be further studied.
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