
VOL. E97-B NO. 11
NOVEMBER 2014

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



2360
IEICE TRANS. COMMUN., VOL.E97–B, NO.11 NOVEMBER 2014

PAPER

Opportunistic On-Path Caching for Named Data Networking

Xiaoyan HU†,††a), Student Member and Jian GONG† ,††b), Nonmember

SUMMARY As a prominent feature of Named Data Networking
(NDN), in-network caching plays an important role in improving the per-
formance of content delivery. However, if each NDN router indiscrimi-
nately caches every data packet passing by (i.e., Caching Everything Ev-
erywhere (CEE)), the result can be unnecessarily frequent cache replace-
ment and cache redundancy in en-route routers and thus in-network caches
are not utilized in an efficient way [1], [2]. Moreover, managing these in-
network caches in a centralized way may lead to excessive resource con-
sumption since the number of these caches is considerable. This work
proposes a distributed and opportunistic on-path caching scheme. To be
specific, each en-route router independently picks content items to cache
in such a way that popular content is more likely to be cached by routers,
especially routers near users, and cache redundancy is reduced. Exten-
sive simulations including trace-driven ones in a PoP-level ISP topology
suggest that the proposed scheme improves the average cache hit ratio of
users’ requests and reduces the average hop count as compared to CEE and
the other on-path caching algorithms considered herein.
key words: NDN, On-path caching, popularity, hop count

1. Introduction

In Named Data Networking (NDN) [3], the promising
paradigm of Information Centric Networking(ICN) [4], in-
network caching plays an important role in improving the
performance of content delivery. However, if NDN routers∗
indiscriminately cache any data packets∗∗ passing by, i.e.,
Caching Everything Everywhere (CEE), the result can be
unnecessarily frequent cache replacement and redundant
caching in these routers, which attenuates the effectiveness
of in-network caching [1], [2]. More particularly, in CEE,
any router that receives a solicited data packet caches it.
If the cache is full, sufficient cached data packets are se-
lected and dropped to allow insertion of the new arrival.
Then frequent replacement is generated as data packets ar-
rive at routers and redundant copies are held in en-route
routers. Furthermore, as the request popularity of content
usually follows a Zipf-like distribution [5], an extremely
large number of objects in the network may be accessed by
users with fairly small frequencies. In CEE, such objects
with fairy small access frequencies may replace relatively
popular content cached in en-route routers and then their re-
dundant copies in en-route routers may be replaced before

Manuscript received January 16, 2014.
Manuscript revised June 30, 2014.
†The authors are with School of Computer Science & Engi-

neering, Southeast University, Nanjing 211189, China.
††The authors are with the Jiangsu Provincial Key Laboratory

of Computer Network Technology, Nanjing 211189, China.
a) E-mail: xyhu@njnet.edu.cn
b) E-mail: jgong@njnet.edu.cn

DOI: 10.1587/transcom.E97.B.2360

they can serve any future requests, whereas the requests ar-
riving immediately for the replaced popular objects cannot
get cache hits any more.

To improve the effectiveness of in-network caching,
cache management has attracted wide attention in the ICN
research community. There is a large body of literature
on collaborative caching [6]–[8] (off-path caching) in tradi-
tional Web caching. However, as the number of in-network
caches is considerable, collaborative caching in NDN, if
not well designed, could significantly increase the com-
munication overhead among nodes and its yield may be
marginal. In contrast, on-path caching requires less co-
ordination among caches and data packets are cached by
any en-route routers or a subset of traversed routers as they
travel through the network. On-path caching has spawned
interest in topics such as reducing caching redundancy [1],
[2] and caching prioritization by popularity assessment [9],
[10]. The caching schemes in [1], [2] do not discriminate
content items resulting in unnecessary content replacement.
A node’s caching decision in the caching schemes of both
[9] and [10] is made by another node and is based on the
popularity information at that node, which may generate un-
necessary duplicates.

This work aims to reduce upstream bandwidth demand
and improve data delivery performance of an NDN do-
main by proposing a distributed and opportunistic on-path
caching scheme. The idea behind our opportunistic on-path
caching is that more popular content would serve a higher
proportion of the total requests and caching content near
users would reduce the average number of hops traversed by
users’ requests. In this scheme, each en-route router inde-
pendently decides the probability of caching a specific data
packet based on the request popularity of the data observed
by the router and the distances from the router or the con-
tent server of the data to the requester. As a result, popular
content is more likely to be cached by routers, especially
routers near users. Such opportunistic on-path caching is a
lightweight scheme without requiring explicit information
exchange among caches. It reduces cache space contention
and cache redundancy in en-route routers and keeps popular
content for longer in caches near users. Extensive simula-
tions including trace-driven ones in a PoP-level ISP topol-
ogy suggest that the proposed scheme improves the average

∗We use router, node and cache interchangeably as the entity
with caching capability.
∗∗We use data packet, content item and object interchangeably

as the data entity for caching.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



HU and GONG: OPPORTUNISTIC ON-PATH CACHING FOR NAMED DATA NETWORKING
2361

cache hit ratio of users’ requests and reduces the average hop
count as compared to CEE and the other on-path caching al-
gorithms considered herein. Note that our proposed scheme
can be applied to other ICN architectures with in-network
caching as well.

2. Related Work

There is a large body of literature on collaborative caching
[6]–[8] (off-path caching). Most consider an overlay model
where collaborative caching is treated as an overlay service
independent from the underlay networks, and they have lim-
itations to be applied in NDN directly. These approaches
either focus on special purpose applications which put addi-
tional constraints on the design (e.g., P2P system), or require
the system to be constructed as a particular type of topology,
e.g., a multicast tree. Extensive calculation is often required,
which limits their usage in global environment. What is
more, collaborative caching in NDN, if not well designed,
could significantly increase the communication overhead as
the number of in-network caches in NDN is considerable.
Li et al. [11] treat the router-level topology of an ISP as a
hierarchical tree and nodes in the tree make their caching
decisions from top to down based on the caching decisions
made by their parents and the content popularity information
of the subtrees rooted at them, which asks the nodes in the
tree to exchange information such as their content popular-
ity and caching decisions. Recently Saino et al. [12] revis-
ited hash routing techniques and proposed to determine the
caching of an item by a random hash function on its content
identifier. The scheme in [13] is similar but the router that
caches a data chunk is decided by the chunk number mod-
ulo a predefined number. The two caching schemes without
cache redundancy maximize cache hit ratio, but path stretch
may incur a performance penalty as such caching consid-
ers nothing about the variance of users’ requests at different
routers.

On-path caching, which requires less coordination
among caches, has attracted wide attention in the ICN re-
search community and spawned interest in topics such as
reducing caching redundancy [1], [2] and caching prioriti-
zation by popularity assessment [9], [10]. Chai et al. [1]
proposed to choose the node with the highest centrality on
the delivery path to cache a specific content item. Instead,
Psaras et al. [2] suggested a probabilistic caching algorithm
to provide fairness regarding the available capacity of the
delivery path. The two on-path caching schemes do not pri-
oritize content items and may result in unnecessary content
replacement. In the caching schemes of both [9] and [10],
an upstream router recommends the content to be cached at
its downstream router based on the content popularity seen
by the upstream router. We argue that each node itself is
at a better position in prioritizing content among its users
and this can reduce unnecessary redundancy, e.g., the repli-
cation of some content popular at certain neighbor but lo-
cally unpopular. Based on the idea that more popular con-
tent would serve a higher proportion of the total requests and

caching content near users would reduce the average num-
ber of hops traversed by users’ requests, this work proposes
a distributed and opportunistic on-path caching. Each router
independently decides whether to cache a data packet based
on the local popularity of the data and the distances from the
router or the content server to the consumer piggybacked in
the data packet such that popular content is more likely to be
cached by routers, especially routers near users, and cache
redundancy is reduced.

3. Opportunistic On-Path Caching

3.1 The System Model

First let graph G = (V, E) be the topology of an NDN do-
main where V and E are the sets of routers with caching
capability and links in the domain separately, and let O =
{o1, o2, . . . , on} represent the set of content requested by
users and hosted by certain content servers outside the do-
main. We assume that requests arrive in the network exoge-
nously as a Poisson process. While NDN naturally supports
multi-path forwarding to enhance network performance, it
is still a non-deterministic variation which depends upon the
development of the future protocol. For simplicity, at least
at the beginning of NDN, we restrict content caching to the
en-route principle (i.e., users’ requests are routed towards
relevant content servers via shortest paths) as the first step
towards a full-fledged one.

In an NDN router, while the same interests are almost
simultaneously received from several users, only the first ar-
rival would be sent upstream for exploring the desired data.
Namely, the requests for the same object from different users
are aggregated at downstream routers and only one interest
is seen by upstream routers (i.e., requests aggregation). Fur-
thermore, requests that get cache hits at downstream routers
cannot be seen by upstream routers either, viz., cache fil-
tering effect [14]. Hence, nodes in the network have dis-
tinct views of content popularity distribution. In our system,
each router periodically obtains local content popularity dis-
tribution by statistics from users’ data access history which
reflects the requests aggregation and cache filtering effect.

A cache hit is recorded for a request if it finds a match-
ing content along the content delivery path. Otherwise, a
cache miss is recorded and the interest traverses the full de-
livery path to the content server. Without loss of general-
ity, we assume that objects are of the same size and each
cache slot in a content store can accommodate one object. In
the event of the arrival of an uncached content, if the router
determines to cache the newcomer and the content store is
full, a cached object is replaced according to the replace-
ment policy.

3.2 The On-Path Caching Algorithm

Under our opportunistic on-path caching, the probability of
an en-route node caching a data packet is calculated based
on the statistical popularity of the data observed by the node



2362
IEICE TRANS. COMMUN., VOL.E97–B, NO.11 NOVEMBER 2014

Table 1 Model notation.

SYMBOL MEANING
oi Solicited and returned data object
ri Local popularity of oi observed by the router
β The parameter configured by the operator
x The count of hops traversed by the data packet

for oi so far
c The count of hops traversed by the interest

packet for oi

Fig. 1 Modified NDN packet types.

itself and the distances from the router or the content server
of the data to the requester. The proposed opportunistic on-
path caching at a router is sketched in Algorithm 1 and re-
lated symbols are explained in Table 1. β is a parameter
configured by the operator of the network. The values of
variables x and c are piggybacked in data packets. The value
of the variable c is first stored in an added field of interest
packets, the Traversed Hops c field, and each en-route router
increases it by 1. Then it is copied into an added field of
matching data packets, the Interest Traversed Hops c field,
when the data packets are found. The value of the variable
x is stored in another added field of data packets, Data Tra-
versed Hops x, and each en-route router increases it by 1.
Figure 1 illustrates the formats of the interest and data pack-
ets with the added fields.

Algorithm 1 Opportunistic On-path Caching (oi)
Require: Interest(oi) (request for content oi)

Update the statistic of oi’s popularity
if oi is in Cache then

return data (oi)
else

if there is a matching PIT entry then
Update the matching PIT entry

else
Increase the traversed hops c field in Interest(oi) by 1
Forward Interest(oi)

end if
Get content object oi back
if have enough space (oi) then

add to cache(oi)
else

Obtain ri, x and c
Compute prob = ri

β ∗ x
c

Cache content with the probability prob
end if
Increase the value of x field of oi by 1
return data (oi)

end if

Upon the arrival of Interest(oi), an interest for oi, the

router updates its local popularity of oi. If the interest gets a
cache hit or a PIT entry match, data oi is returned or the ar-
rival face of the interest is added into the matching PIT entry.
Otherwise, the interest gets a cache miss and is forwarded
upstream. Then its traversed hops c is increased by 1 before
being forwarded. When oi returns (the router consults its
content store and PIT to see if oi is uncached and solicited),
the router first checks if its cache space is not fully occupied
yet. If yes, oi is inserted into the cache directly. Otherwise,
the router gets ri from local popularity statistics and x and
c piggybacked in data oi. It computes prob = ri

β ∗ x
c and

caches oi with the probability prob. Then the data traversed
hops x of oi is increased by 1 before oi is forwarded down-
stream.

3.3 Analysis and Discussion

From Algorithm 1, we can see that as parameter β (0 < β ≤
1) increases, the same object is less likely to be cached at
a specific router. We will evaluate the impact of parame-
ter β on the performance of opportunistic on-path caching
in Sect. 4. Here we claim that our opportunistic on-path
caching possesses the following properties:

Proposition 1. Popular content is more likely to be
cached by en-route routers.

PROOF. It can be seen that the probability of a router
caching a data packet is proportional to the local popularity
ri and the data traversed hops x, and inversely proportional
to the interest traversed hops c. Then for a popular object
and an object with fairly small access frequency hosted by
the same content server, a specific en-route router prefers
the popular one as the popularity of the other is so small that
its caching probability can even be negligible. Therefore,
popular content is more likely to be cached and unneces-
sary replacement is reduced, which keeps popular objects in
caches for longer and improves the cache hit ratio. �

Proposition 2. A specific data packet is more likely to
be cached closer to its requester.

PROOF. For a specific data packet oi, as it travels from
its data source (either its content server or an intermediate
cache) to the requester, its interest traversed hops c is con-
stant, but its data traversed hops x increases. Moreover, due
to the requests aggregation property, its popularity ri may
increase as it gets closer to its requester. Then as the proba-
bility of caching the data is proportional to ri and x, the data
is more likely to be cached in routers nearer to the requester,
which reduces the average hop count of fetching the data.

�
Proposition 3. An object that has been cached on the

path from its content server to its requester is less likely to
be cached by other routers on the path.

PROOF. Let the hops from the requester of the object
to its content server S be c and the hops from the content
server S to an en-route router Ra be x. If the object has not
been cached on the delivery path, Ra caches the object with
probability prob = ri

β∗ x
c . If, instead, the object is cached by

another router Rb on the path from S to Ra and Rb is α (0 <



HU and GONG: OPPORTUNISTIC ON-PATH CACHING FOR NAMED DATA NETWORKING
2363

α < x) hops to S , then Ra caches the object with probability
prob

′
= ri

β∗ x−α
c−α . Let us build a function f (α) = x−α

c−α where x
and c are constants. Then its derivative f

′
(α) = x−c

(c−α)2 . Since

x ≤ c, f
′
(α) ≤ 0 and f (α) decreases as α increases. Thus

x
c ≥ x−α

c−α , viz., prob = ri
β ∗ x

c ≥ ri
β ∗ x−α

c−α = prob
′
. Hence,

the object that has been cached on the path from the content
server to the requester is less likely to be cached by another
router on the path, which reduces cache redundancy. �

Proposition 4. For two objects with the same popular-
ity in users, an en-route router prefers the one whose data
source is farther from its requester.

PROOF. An en-route router caches an object oi with
probability prob(ri, x, c) = ri

β ∗ x
c = ri

β ∗ c−d
c = ri

β ∗ (1− d
c ) =

PROB(ri, d, c) where d is the hop count from the en-route
router to the requester of oi. Then for two objects with
the same popularity r

′
at the en-route router and the same

hop count d
′

from the en-route router to their requesters, the
object with larger hop count from its requester to its data
source, i.e., whose data source is farther away from its re-
quester, is more likely to be cached by the en-route router.

�
While only historical information is used, Famaey

[15] showed the theoretical gain that can be achieved by
prediction-based caching strategies under the assumption
that perfect prediction about popularity within a certain pe-
riod of time in the future is possible. With the ever chang-
ing access patterns at end users, routers have to periodically
track content popularity. Fortunately, content popularity
generally keeps stable within some time period and the pop-
ularity statistics can restart at regular time intervals. Gener-
ally speaking, a shorter interval is preferred by our caching
scheme to quickly adapt the caching decisions to more dy-
namic access patterns. Note that our proposed caching algo-
rithm is lightweight as each node independently makes its
own caching decisions solely based on its own knowledge
without requiring explicit information exchange with other
nodes.

4. Performance Evaluation

In this section, we present an in-depth evaluation to quantify
the effectiveness of our caching scheme and also evaluate
the factors that impact its performance.

4.1 Experiment Setup

We use the open-source ndnSIM [16] package which imple-
ments the NDN protocol stack for the NS-3 network sim-
ulator (http://www.nsnam.org/) to run simulations for a va-
riety of scenarios on a 2.70 GHz CPU with RAM 2.0 GB.
We extend ndnSIM by adding Traversed Hops field in in-
terest packets and Data Traversed Hops and Interest Tra-
versed Hops fields in data packets , and by customizing the
forwarding strategy in making caching decisions with our
opportunistic on-path caching.

Network Topology. We run our simulations in two dif-
ferent network topologies — a small binary tree and a PoP-

level ISP topology. A tree is small enough to be amenable
to such analysis and instructive since from the view of an
ISP, the content distribution topology is effectively a tree,
and the simulations in the PoP-level topology reflect how
the opportunistic on-path caching performs if deployed in
real network.

Methodology. We evaluate how cache size, parameter
β and users’ access patterns impact the performance of the
opportunistic on-path caching. In our simulations, we set
homogeneous cache sizes at all routers as Rossi et al. [17]
proved that the gain brought by content store size hetero-
geneity is limited. We measure the impact of parameter β
by setting it from 0.3 to 1.0. We use synthetic request traffic
whose popularity follows Zipf distribution with a typical ex-
ponent s = 0.73 (see, e.g., [5], [18]) as well as a real world
Web traffic trace [19] as users’ access patterns. Due to the
stability of the access patterns considered herein, we treat
the simulation duration as one interval of popularity statis-
tics. We assume that users express interests as a Poisson
process with constant average rates 100 interests/s. The pay-
load size of data packets is 1024 bytes for all simulations and
topologies. Each link in both topologies is assigned a band-
width of 10 Mbps and a propagation delay of 1 ms. As the
opportunistic on-path caching is independent of a specific
cache replacement algorithm, similar to previous works [1]–
[3], here we only present results with Least Recently Used
(LRU). We also tried Least Frequently Used (LFU), which
yielded qualitatively similar results.

Performance Metrics. The metrics to quantify the ef-
fectiveness of our algorithm are cache hit ratio (i.e., the per-
centage of interests satisfied by cached content) which im-
plies upstream bandwidth demand, and average hop count
(i.e., the average number of hops traversed by an interest
packet) which demonstrates data delivery performance. We
compare the proposed scheme (Opportunistic) against other
on-path caching algorithms: (1) CEE, (2) a probabilistic
algorithm which caches each content with probability 0.3
(Prob(0.3)), (3) a probabilistic algorithm which caches each
content with probability 0.7 (Prob(0.7)), (4) the probabilis-
tic algorithm (ProbCache) proposed in [2] and (5) the pop-
ularity based algorithm (Popularity) proposed in [10].

4.2 Small Scale Evaluations

We start our evaluation in a 3-level binary tree with 15 nodes
as the simple router-level topology for an ISP. 8 content con-
sumers are attached to the leaves of the tree and their inter-
ests are routed towards a single content server S attached to
the root of the tree. There are 1000 distinct objects hosted by
S and their popularity follows Zipf distribution with shape
parameter 0.73 as shown in Fig. 2. Each simulation lasts
for 8 minutes and is repeated for 10 runs to get the average
results. Each run is set with different NS-3 “RngRun” argu-
ments as seeds to randomize the request traffic and proba-
bilistic caching.



2364
IEICE TRANS. COMMUN., VOL.E97–B, NO.11 NOVEMBER 2014

Fig. 2 The popularity distribution of the request trace for the binary tree.

Fig. 3 The average cache hit ratio and the average hop count in the binary
tree. They are 0 and 5 separately for all algorithms at time 0 as there is no
content in the caches.

4.2.1 The Effectiveness of Opportunistic On-Path Caching

Figure 3 demonstrates the average cache hit ratio and the
average hop count of users’ requests in the binary tree un-
der different caching algorithms when the cache sizes of the
routers are set to 100 objects and β is set to 0.7. It can
be seen that it takes our proposed caching scheme less than
one minute to initially learn the data access patterns of these
users and then it outperforms the other caching algorithms
considered herein in improving the average cache hit ratio
and reducing the average hop count. In particular, it im-
proves the average cache hit ratio from 0.46 to 0.67 (an im-
provement of approximately 0.21) and reduces the average
hop count from 3.4 to 2.7 (a reduction of 0.7) against CEE;
there is around 0.08 ∼ 0.17 improvement in the average
cache hit ratio and around 0.3 ∼ 0.6 reduction in the av-
erage hop count compared to the other algorithms. As the
content server is attached to the root node of the tree and
near users in the scenarios evaluated herein, the reduction in
the average hop count is unobvious. But in real scenarios
where content servers may be farther from users, the reduc-

Fig. 4 The average # of cache evictions at each node of different tree
levels and the average global popularity of cached content in the binary
tree.

tion in the average hop count should be more positive.
To understand how the opportunistic on-path caching

actually works, we measure the average number of cache
evictions at each node per tree-level (where the smaller the
tree level, the closer to the content server this level is) and
the average global popularity (i.e., the content popularity
among all users) of cached content. As shown in Fig. 4(a),
our proposed scheme reduces the number of cache evic-
tions from hundreds of thousands under CEE to less than
a thousand, a reduction of about 2 orders of magnitude. The
big reduction in the number of cache evictions validates our
claim that the opportunistic on-path caching algorithm re-
duces cache space contention. As seen in Fig. 4(b), after the
system reaches steady state, the average global popularity
of cached content under the opportunistic on-path caching is
larger than that of the rest algorithms except the popularity
based caching by more than 3×10−4. Furthermore, there are
another two surprising observations. The first is that under
our caching scheme, the average global popularity of cached
content in the first 30 seconds is larger than that in the time
remaining. The reason is that at the beginning, these caches
are empty and the accessed content items which should be
relatively popular are duplicately stored in caches on their
delivery paths; then later as more objects are accessed by
users, our scheme picks other content to store in caches to
increase the diversity of cached content, which improves
the average cache hit ratio. The second observation is that
the popularity based caching beats our proposed caching
scheme in terms of the average global popularity of cached
content throughout the simulation duration, whereas its av-
erage cache hit ratio is smaller. Then we further measure
the cache redundancy of these algorithms (to save space,
the related figure is not shown) and find that there is much



HU and GONG: OPPORTUNISTIC ON-PATH CACHING FOR NAMED DATA NETWORKING
2365

Fig. 5 The impact of parameter β on the average cache hit ratio and the
average hop count in the binary tree.

more cache redundancy under the popularity based caching,
which may be unnecessary, e.g., a node is asked to cache
certain content popular at a neighbor but locally unpopular.
Therefore, our caching scheme not only succeeds in picking
relatively popular content to stay in caches, but also reduces
unnecessary cache redundancy.

4.2.2 The Impact of Parameter β and Cache Size

Figure 5 plots the impact of parameter β on the average
cache hit ratio and the average hop count for simulations
within 8 minutes where the cache sizes of the routers are
set to 100 objects. It can be seen that with all evaluated
setting of β, our opportunistic on-path caching performs the
best among all the caching algorithms considered herein and
when β is set to 0.7, its improvement in the average cache hit
ratio is up to 0.19 and its reduction in the average hop count
is up to 0.7 against CEE. But if β is set to 0.3, there is no sig-
nificant difference in the caching performance between our
scheme and ProbCache. Hence, if the opportunistic on-path
caching is deployed in real network, operators should adapt
the β value to users’ access patterns.

To evaluate the impact of cache size on the perfor-
mance of the proposed caching scheme, we set β to 0.7 and
change the cache sizes from 5 to 120 objects. Figure 6 il-
lustrates the results of the average cache hit ratio and the
average hop count versus cache size. As expected, with dif-
ferent settings of cache size, our scheme still outperforms
the others. Its improvement in the average cache hit ratio is
around 0.11 ∼ 0.19 against CEE and around 0.03 ∼ 0.16
compared to the other algorithms. Its reduction in the av-
erage hop count is roughly 0.36 ∼ 0.64 against CEE and
around 0.04 ∼ 0.57 against the rest of the algorithms. Fur-
thermore, as the cache size increases, the performance of

Fig. 6 The impact of cache size on the average cache hit ratio and the
average hop count in the binary tree.

the proposed scheme is improved, but at a slower pace since
the objects inserted into the additional cache space is less
popular due to the Zipf distribution nature of users’ request
popularity.

4.3 Larger Scale Simulations

In this subsection, we investigate the behavior of our op-
portunistic on-path caching in a more practical and larger
scale network topology using a real trace. The simulations
here model the scenario where there are multiple content
servers each hosting a different content set, users access con-
tent from these content servers and content items are op-
portunistically cached in network during users’ access. The
adopted topology is a PoP-level Rocketfuel SPRINT topol-
ogy [20] with 52 nodes as displayed in Fig. 7 where nodes
with degree 1 are classified as consumers (19 red nodes),
the nodes directly connected to the consumers are classi-
fied as gateways (13 green nodes), and the remaining nodes
are classified as intermediate routers (20 white nodes). 3
outside content servers each are attached to a different gate-
way randomly picked for each simulation run (we conduct
10 simulation runs for each simulation). Since we do not
find a trace which includes users’ access of different con-
tent sets, to remedy this, we adopt a WorldCup request trace
[19] used in [21] and divide the set of requested objects in
the trace into three subsets each serving as the content set
hosted by one of the three content servers. The trace in-
cludes 2, 880, 720 requests and 7, 175 distinct objects and
its object popularity distribution is shown in Fig. 8.

We evaluate the impact of parameter β on the perfor-
mance of our proposed scheme and find that our caching
scheme with β = 0.7 still works the best in this specific
scenario (due to space limitation, we do not include the re-



2366
IEICE TRANS. COMMUN., VOL.E97–B, NO.11 NOVEMBER 2014

Fig. 7 The PoP-level SPRINT topology.

Fig. 8 The popularity distribution of the WorldCup request trace.

Fig. 9 The simulation results under different caching algorithms in the
SPRINT topology.

lated figure). To evaluate the impact of cache size, we keep
setting cache size from 40 objects to 120 objects and β to
0.7. As illustrated in Fig. 9, in this specific scenario where
there are multiple content servers with different distances to
the users, the opportunistic on-path caching still stands out.
Its improvement in the average cache hit ratio is up to 0.24
against CEE and around 0.04 ∼ 0.20 compared to the other

algorithms. Its reduction in the average hop count is roughly
0.8 against CEE and around 0.3 ∼ 0.8 against the others.

5. Discussion & Future Work

Our opportunistic on-path caching, a lightweight scheme
that does not require explicit information exchange among
caches, has been verified to be effective in improving the av-
erage cache hit ratio and reducing the average hop count tra-
versed by interests. It is now, however, vital to detail some
key limitations of the study. The first limitation is the lack of
realistic routing information for NDN. NDN routing is usu-
ally based on a range of characteristics including load bal-
ancing and QoS issues. However, as NDN has not been de-
ployed, there is no information regarding this available and
so far, the routing in ndnSIM is still based on fixed short-
est paths, thereby removing the presence of unpredictable
multipath routing and route variations. The second limita-
tion is that we assume the content items being studied are
with equal size, which may not be that practical, whereas
the distribution of object sizes may make some difference
in in-network caching. The third limitation is the memory
consumption for popularity statistics which is proportional
to N, the number of distinct objects accessed during the sta-
tistical interval. As NDN content names are with variable
length, popularity statistics can store the hash values of these
names instead to reduce space usage. Moreover, we can use
space efficient double counting Bloom filter [22] for record-
ing content popularity to further reduce space usage, which
is similar as that in [22] for making a statistic of flow length
on high speed network. The above mentioned point out the
direction of refining our on-path caching algorithm and fur-
ther verifying it.

6. Conclusion

This work proposes a distributed and opportunistic on-path
caching scheme for Named Data Networking domains to re-
duce upstream bandwidth demand and improve data deliv-
ery performance. It asks each en-route router to indepen-
dently decide the probability of caching a specific content
item based on the data popularity observed by the router it-
self and the distances from the router or the content server
to the requester such that popular content is more likely to
be cached by routers, especially routers near users. We ver-
ify the effectiveness of our proposed scheme by conducting
simulations in both a binary tree and a PoP-level ISP topol-
ogy. We use both synthetic request traffic whose popularity
follows Zipf distribution and real world Web traffic trace as
users’ access patterns of our simulations. Our extensive sim-
ulations suggest that the proposed scheme improves the av-
erage cache hit ratio and reduces the average hop count tra-
versed by interests as compared to the other on-path caching
algorithms considered herein. Moreover, we examine the
actual cache responses and verify that the proposed scheme
does reduce unnecessary cache replacement and cache re-
dundancy, and pick popular content to keep in caches. Our



HU and GONG: OPPORTUNISTIC ON-PATH CACHING FOR NAMED DATA NETWORKING
2367

next step is to refine our on-path caching by taking into ac-
count multipath routing and object size variation.

Acknowledgements

This work was sponsored by the National Grand Fun-
damental Research 973 program of China under Grant
No.2009CB320505, the National Nature Science Founda-
tion of China under Grant No.60973123, the Technol-
ogy Support Program (Industry) of Jiangsu under Grant
No.BE2011173 and the Prospective Study on Future Net-
work under Grant No.BY2013095-5-03. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of those sponsors.

References

[1] W.K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache “less for more”
in information-centric networks,” Proc. IFIP’12, pp.27–40, Berlin,
Heidelberg, 2012.

[2] I. Psaras, W.K. Chai, and G. Pavlou, “Probabilistic in-network
caching for information-centric networks,” Proc. ICN’12, pp.55–60,
New York, NY, USA, 2012.

[3] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H.
Briggs, and R.L. Braynard, “Networking named content,” Proc.
CoNEXT’09, pp.1–12, New York, NY, USA, 2009.

[4] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking,” IEEE
Commun. Mag., vol.50, no.7, pp.26–36, 2012.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” Proc. INFO-
COM’99, pp.126–134, New York, NY, USA, 1999.

[6] J. Ni and D.H.K. Tsang, “Large-scale cooperative caching and
application-level multicast in multimedia content delivery net-
works,” IEEE Commun. Mag., vol.43, pp.98–105, May 2005.

[7] P. Sarkar and J.H. Hartman, “Hint-based cooperative caching,” ACM
Trans. Comput. Syst., vol.18, no.4, pp.387–419, 2000.

[8] H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchi-
cal web caching systems,” Proc. INFOCOM’01, pp.1416–1424, An-
chorage, Alaska, USA, 2001.

[9] K. Cho, M. Lee, K. Park, T.T. Kwon, Y. Choi, and S. Pack,
“Wave: Popularity-based and collaborative in-network caching for
content-oriented networks,” Proc. NOMEN’12, pp.316–321, Or-
lando, Florida, USA, March 2012.

[10] C. Bernardini, T. Silverston, and F. Olivier, “Towards popularity-
based caching in content centric networks,” RESCOM 2012, pp.1–2,
Les Vosges, France, June 2012.

[11] J. Li, H. Wu, B. Liu, J. Lu, Y. Wang, X. Wang, Y. Zhang, and
L. Dong, “Popularity-driven coordinated caching in named data net-
working,” Proc. ANCS’12, pp.15–26, Austin, TX, USA, 2012.

[12] L. Saino, I. Psaras, and G. Pavlou, “Hash-routing schemes for in-
formation centric networking,” Proc. ICN’13, pp.1–6, Hong Kong,
China, 2013.

[13] Z. Li and G. Simon, “Time-shifted tv in content centric networks:
The case for cooperative in-network caching,” Proc. ICC2011, pp.1–
6, Kyoto, Japan, 2011.

[14] C.L. Williamson, “On filter effects in web caching hierarchies,”
ACM Trans. Internet Techn., vol.2, no.1, pp.47–77, 2002.

[15] J. Famaey, T. Wauters, and F.D. Turck, “On the merits of popularity
prediction in multimedia content caching,” Proc. IM’11, pp.17–24,
Dublin, Ireland, 2011.

[16] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN simula-
tor for NS-3,” Technical Report NDN-0005, NDN, Oct. 2012.

[17] D. Rossi and G. Rossini, “On sizing ccn content stores by exploiting
topological information,” Proc. NOMEN’12, pp.280–285, Orlando,
Florida, USA, March 2012.

[18] H. Gomaa, G. Messier, R. Davies, and C. Williamson, “Me-
dia caching support for mobile transit clients,” Proc. WIMOB’09,
pp.79–84, Washington, DC, USA, 2009.

[19] “Ircache home,” http://ita.ee.lbl.gov/html/traces.html
[20] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies

with rocketfuel,” ACM SIGCOMM Comput. Commun. Rev., vol.32,
no.4, pp.133–145, 2002.

[21] M. Xie, I. Widjaja, and H. Wang, “Enhancing cache robustness for
content-centric networking,” Proc. INFOCOM’12, pp.2426–2434,
Orlando, Florida, US, 2012.

[22] H. Wu, J. Gong, and W. Yang, “Algorithm based on double counter
bloom filter for large flows identification,” J. Software, vol.21, no.5,
pp.1115–1126, 2010.

Xiaoyan Hu got her B.S. degree in soft-
ware engineering from Nanjing University of
Science & Technology in 2007 and her M.S.
degree in computer architecture from Southeast
University in 2009. She is now a Ph.D. candi-
date in Southeast University focusing on the de-
sign of NDN in-network caching. She visited
netsec lab in Colorado State University, a re-
search group working on NDN, from Sept. 2010
to Aug. 2012.

Jian Gong is a professor in School of Com-
puter Science and Engineering, Southeast Uni-
versity. His research interests are network ar-
chitecture, network intrusion detection, and net-
work management. He received his B.S. in com-
puter software from Nanjing University, and his
Ph.D. in computer science and technology from
Southeast University.


