
353Study on the Theoretical Framework of Not So Cooperative Caching

Study on the Theoretical Framework of Not So Cooperative Caching
Xiaoyan Hu, Jian Gong

School of Computer Science & Engineering, Southeast University, China
{xyhu, jgong}@njnet.edu.cn

Abstract

This work proposes a scheme that enables selfish nodes
to cooperate in caching, here dubbed Not So Cooperative
Caching (NSCC). We consider a network comprised
of selfish nodes; each is with caching capability and an
objective of reducing its own access cost by fetching data
from local cache or from other caches. The challenge is
to determine what objects to cache at each node so as to
induce low individual node access costs, and the realistic
access “price” model which allows various access “prices”
of different node pairs further complicates the decision
making. Using a game-theoretic approach and considering
the various access “prices,” NSCC seeks a global object
placement in which individual node access costs are
reduced as compared to that when they operate in isolation
(referred to as GL) so as to incur implicit cooperation even
among these selfish nodes. Our extensive experimental
results demonstrate that in most cases, NSCC outperforms
previous work (TSLS) which ignores the difference in
access “prices,” reduces individual node access costs by on
average, more than 47.32% as compared to GL, and allows
for a fairer treatment of nodes according to their average
access “prices.”

Keywords:	 Content caching, Selfish nodes, Game, Various
access prices.

1	 Introduction

This work proposes a scheme that enables selfish nodes
to cooperate in caching. We consider a network comprised
of selfish nodes; each is with caching capability and an
objective of reducing its own access cost. The model
assumes that the “price” of accessing an object from a
node’s local cache is minimal, and that from other caches
are larger but smaller as compared to that from original
data sources (e.g., fetching data from local cache or from a
neighboring cache may reduce latency, load on potentially
expensive upstream links, and so forth). The challenge is
to determine what objects to cache at each node (resulting
in a global object placement) such that these selfish nodes
have incentive to join the cooperation.

This work is similar to “Cooperative Caching” [1-4],
but dubbed Not So Cooperative Caching (NSCC) as each
node seeks to maximize only its own benefit in terms of cost

reduction rather than common welfare, which may come at
the expense of others. These selfish nodes make placement
decisions based on only local request patterns regardless
of requests from other nodes. However, these selfish nodes
can still implicitly cooperate by sharing their cached data.
Then with limited storage space, each node can make its
placement decisions based on the placement decisions at
other nodes with an attempt to greedily minimize its own
cost of serving all its requests. But as a rational and selfish
entity, a node would join the cooperation if and only if its
cost would be reduced as compared to that when it operates
in isolation using Greedy Local strategy (GL) to cache its
most popular objects, which is the rational participation
constraint (i.e., mistreatment-free).

Laoutaris et al. [5] devised a mistreatment-free TSLS
policy based on a game-theoretic formulation for selfish
replication. A key assumption in developing TSLS is
that the “prices” of accessing an object between nodes
are equal which is fairly impractical. In Section 4, with
an example, we show that in certain scenarios where the
access “prices” of different node pairs differ, TSLS which
ignores access “price” difference may even cause the cost
of certain node(s) to be larger than that under GL. So this
work generalizes the problem in [5] to the more practical
scenarios which allow various access “prices” of different
node pairs and thus each node has to distinguish copies
of an object at different caches according to their access
“prices” when making caching decisions. Considering
the selfishness and rationality of NSCC nodes and the
conflict and cooperation between them, a game-theoretic
approach is applied to identify a global object placement
which satisfies the rational participation constraints of all
nodes (called a guaranteed object placement) so as to incur
implicit cooperation even among these selfish nodes as
they attempt to do better than that under GL. Note that in
NSCC, once nodes commit to a specific object placement,
they cannot deviate from it (i.e., no replacement is allowed)
until the game is re-invoked and thus NSCC refers to object
caching for a longer term. Our extensive experimental
results demonstrate that in most cases, NSCC outperforms
TSLS, reduces individual node access costs by on average,
more than 47.32% compared to GL, and allows for a
fairer treatment of nodes according to their average access
“prices.”

We believe NSCC is a necessary evolution of
cooperative caching in the emerging world of Information

*Corresponding author: Xiaoyan Hu; E-mail: xyhu@njnet.edu.cn
DOI: 10.6138/JIT.2014.15.3.04

Journal of Internet Technology Volume 15 (2014) No.3354

Centric Networking (ICN) such as TRIAD [6], DONA [7]
and NDN [8]. Many ICN network architectures feature
routing by name and in-network caching capability
to improve performance. NSCC is well-suited to the
cooperation among NDN border routers with caches at the
network layer [9]. As such, existing and future applications
would benefit from caching without requiring specific
configurations.

2	 Related Work

Cooperative caching among file/web ecaches [1-4]
or among L2 caches in a multiprocessor system [10-11]
seeks a “globally beneficial placement” of items to improve
cache hit ratio and item access latency for the whole
system (i.e., common welfare). Such caches belong to one
organization and share no fundamental conflict of interests
but broad common interest. They would like to agree upon
a “globally beneficial placement,” e.g., in [10], a L2 cache
spills replaced blocks to other L2 caches to avoid future
off-chip accesses and the latter host cache accepts such
placement, which may result in the eviction of data at the
host cache (as a subsequent spill is not allowed). However,
a “globally beneficial placement” is much harder to achieve
in a network with selfish caches (our NSCC case) than in a
network with caches friendly to each other, as in the former,
caches behave as rational entities that aim at maximizing its
own benefit, which may come at the expense of others.

To the best of our knowledge, there are only a few
recent works on game-theoretic aspect of cooperative
caching. The work in [12] which serves as the seminal
work on game-theoretic aspect of cooperative caching
studies selfish cooperative caching without consideration
of storage limitation. But cache-capacity limitation models
an important real-world restriction and hence the following
works [5][13-14] focus on the capacitated version which
is left as an open direction by [12]. They all consider
distributed and capacitated selfish caching and follow
the simplified access “price” model introduced in [15]
where nodes are equidistant (equal access “price”) from
one to another and a special data source holds all objects.
The work in [5] devises a cooperative caching strategy
(TSLS) among selfish nodes such that Nash equilibrium
object placement is obtained. However, our work shows
that with TSLS, in a realistic environment where different
node pairs are with different access “prices”, access costs
of certain nodes may be even larger than that when they
operate in isolation. The work in [13-14] extends the work
in [5] with node churn, i.e., random changes in the set of
participating nodes in the group that may occur due to
“join” and “leave” events, and studies corresponding game
theoretic properties. Pollatos et al. [16] slightly extend the

work in [5] to the case that where special data sources for
different objects are at different distances. Gopalakrishnan
et al. [17] indeed extend the access “price” model into the
realistic scenario which allows various access “prices” of
different node pairs so as to model the more generic cases
and allow a more extensive application prospect and they
primarily focus on the discussion of the existence of Nash
equilibrium object placements in theory, do not devise a
feasible algorithm to seek an object placement that enables
selfish nodes to cooperate in caching, and not to mention
experimental analysis. Our work follows the realistic access
price model in [17], but instead, we focus on devising
an algorithm to seek a guaranteed object placement and
verifying its effectiveness both in theory and with extensive
simulations.

Another related work was done on the market-based
resource allocation in content delivery networks [18],
where the authors consider only greedy local replication
strategies. There is another line of works on incentives
in P2P networks. e.g., Antoniadis et al. [19], study the
problem of attracting users to a P2P network and making
them contribute more content. The aforementioned
work and other similar ones, formulate the problem at a
completely different level as compared to our work, as they
focus on the number of files shared by each node, without
identifying the identities of these files, whereas we focus
on identifying the exact set of files that can be shared by
nodes.

3	 Problem Formulation

We formally define the NSCC problem as follows.
As illustrated in Figure 1, we are given a set of n selfish
caching nodes forming a “NSCC group,” and a set of m
unit-sized objects. The access pattern of node i is described
by vector ri = {ri1, ri2, …, rik, …, rim} where rik is the rate at
which node i requests object k.

Each node aims to minimize its own access cost. When
node i accesses an object, the cost depends on the object’s
location. Let di,j denote the cost for node i to access an
object cached at node j, di,i denote the cost to fetch an object

Figure 1 An NSCC Group

355Study on the Theoretical Framework of Not So Cooperative Caching

from its local cache and di,n+1 denote the cost for node i to
fetch an object from original data sources. We assume ∀i,
j, di,i < di,j = dj,i < di,n+1, i.e., when a node accesses objects,
local cache is preferred over other caches which are
preferred over original data sources. The above definition
of d is referred to as our access “price”1 mode.

The cost of a node depends on where objects are placed
and its access pattern. Due to cache space limitation, each
node can cache only some objects locally and must decide
which objects to place in its cache. Let Si denote the cache
size at node i (Si < m) and Pi denote the set of objects
cached at node i. Similarly, all other nodes decide which
objects to place in their caches. The result is a global object
placement P = {P1, P2, …, Pn}. Then the cost of node i
depends on the placement P. Let Ci(P) denote the cost of
node i under object placement P which is computed as
follows:

	 � (1)

The cost of node i is the total access cost to serve
requests for all the objects. The cost for node i to serve
requests for any object k is the product of its request rate
and the cost for node i to fetch object k which depends on
the location from which the object is fetched, either from
local cache, or from the “cheapest” nodes that caches object
k or from the original source. Let Q-i = P1 ∪ ... ∪ Pi-1 ∪
Pi+1 ∪ ... ∪ Pn denote the set of objects collectively held by
nodes other than node i under the global placement P = {P1,
P2, …, Pn} and di,l(i,k) denote the cost for node i to fetch the
object from the “cheapest” node l(i,k) that caches object k.
More specifically, for each request for any object k, if object
k is locally cached, it is accessed from local cache with cost
di,i; otherwise if object k is cached at certain nodes in the
NSCC group, it is accessed from the “cheapest” node l(i,k)
among those that store object k with cost di,l(i,k); otherwise it
is accessed from the original source with cost di,n+1.

Instead, under GL, objects at node i are sorted in
descending order by their request rates and node i caches
the Si most popular objects. Then each object is accessed
either from local cache or from its original source and the
cost of node i under GL is computed as follows:

	 � (2)

NSCC seeks a guaranteed object placement P such that
for each node in the group, its cost would be reduced as
compared to that under GL. And the objective is formulated
as follows:

1	 Here, by price, we do not narrowly mean money.

	 ∀i, Ci(P) < Ci(GL)� (3)

which is the participation or individual rationality constraint
for each rational node.

4	 A Game-Theoretic Approach

As described in the former sections, NSCC nodes are
intelligent rational decision-makers with both conflict and
cooperation between them and these intelligent individuals
interact with one another in an effort to achieve their own
goals, which is a typical game. And thus we address this
problem in a game-theoretic context, where nodes are the
players. Each player implements a placement strategy that
consists of choosing which objects to store locally in its
limited storage space, at one or more occasions in the game.
The goal of each player is to minimize its cost of serving
all its requests for objects at the end of the game which is
called an NSCC game.

Definition 1: (Best Response) Given a residual
placement P-i = P - {Pi}, the best response for node i is the
placement Pi ∈ Ai such that Ci(P-i + {Pi}) ≤ Ci(Pi + {Pi'}),
∀Pi' ∈ Ai, where Ai is the set of available placements at
node i.

The best response at node i is computed as follows:
gik(P-i) denotes the excess gain incurred by node i from
replicating object k under P-i and is defined as follows:

	 � (4)

Objects are sorted in descending order by gik(P-i) and
the Si most valuable objects are selected to cache, which is
the best response at node i under P-i.

Note that we assume that each node knows the exact
object placements at other nodes when it computes its
best response. The cases that either certain nodes are
misinformed, or some nodes cheat about their placements
are not considered since nodes are enforced to be frank or
they will be kicked out from the NSCC group.

Definition 2: (Stable Placement) A global placement
P is stable if and only if it is composed of individual
placements that are best responses.

Therefore a stable placement P* is just a Nash
equilibrium [20] placement of an NSCC game in which
no node can unilaterally change its placement to increase
its gain such that additional stability achieves. And, above
all, Nash equilibrium object placements satisfy the rational
participation constraints that an NSCC game asks for.
Subsection 4.1 discusses in what circumstances, there are
Nash equilibrium object placements in NSCC games.

Journal of Internet Technology Volume 15 (2014) No.3356

Definition 3: (Iterative Best Response [IBR]) Given
the initial global placement P(0) as that under GL, start an
iterative procedure where at iteration (or call it round) l,
any node i waits for its turn to play the game once and only
once by performing the following steps:
Step 1:	node i computes its best response Pi

(l) to P-i
(l, i-1),

after node i-1 and before node i+1;
Step 2:	node i notifies others of its completeness and

broadcasts its object placement changes (if there
are) so that all nodes can compute P(l, i) = P-i

(l, i-1) +
{Pi

(l)}.
P(l, i-1) is the global placement at iteration l after node

(i-1)’s best response and prior to node i’s best response;
P-i

(l, i-1) is the corresponding residual placement with respect
to node i. The IBR search stops and returns P = P(t) when
at iteration t: P(t) = P(t-1), i.e., when no node can profit by
replacement.

We use IBR to identify the guaranteed object placement
of an NSCC game. As mentioned, in each round of IBR,
these selfish nodes are arranged in a certain order to play
the game and each node should know its order so that no
nodes would play the game simultaneously. We discuss
that the ordering of playing the game impacts the resulting
individual node costs, i.e., impacts the fairness among
these selfish nodes, in performance evaluation section. The
node ordering can be the same for all rounds of IBR and
can be determined by some rules, e.g., based on the order
of nodes’ identifiers or their average access “prices” as
described in the evaluation section. Or the node ordering
can be variable for different IBR rounds and here we give
a specific example about how these selfish nodes determine
their ordering at each round: at each round of IBR including
the procedure of exchanging the initial object placements
under GL, each node generates a random nonce value and
piggybacks the nonce value on to its object placement
announcement. After receiving the n-1 nonce values from
other nodes in this round, each node computes its turn in the
next round based on the ranking of its nonce value among
all these nonce values received from others (the range of
nonce values should be large enough so that there is only a
negligible chance that any two nodes are with equal nonce
values).

Note that as a distributed algorithm, the IBR method
has each node make its own object placement decisions
based on its own local access pattern, and no exact access
pattern needs to be exposed to others, which keeps both
autonomy and some privacy for nodes.

4.1	 The Resulting Object Placements
Regarding the resulting global object placement at each

iteration of IBR, we can prove the followings:
Proposition 1. Each object in P1

0 ∪ …∪ Pn
0 would be

kept at least one copy in the NSCC group.
Proof. ∀i, ke ∈ Pi

0, ki ∉ Pi
0 then rike

 > riki
 such that object

ke is greedily cached at node i under GL. In the following
IBR rounds, if object ke is replaced by ki at certain step,
then rike

 (di,l(i,ke) - di,i) < riki
 (di,l(i,ki)

 - di,i) . Since rike
 > riki

, then
di,l(i,ke) < di,l(i,ki)

. If di,l(i,ke) = di,n+1, i.e., ke at node i is the single
copy in the NSCC group before the replacement, then di,l(i,ki)

> di,n+1 which contradicts our assumption that ∀i, j, di,j <
di,n+1. That said, an object in P1

0 ∪ …∪ Pn
0 can be evicted

only if there are replicas of it in the NSCC group. And thus
each object in P1

0 ∪ …∪ Pn
0 would have at least one copy in

the NSCC group.
Proposition 2. At most min{Σ i = 1

n Si - | P1
0 ∪ …∪ Pn

0 |,
 m - | P1

0 ∪ …∪ Pn
0 |} objects can be inserted into the

NSCC group during IBR iterations.
Proof. From proposition 1, we know that objects in

P1
0 ∪ …∪ Pn

0 would take at least | P1
0 ∪ …∪ Pn

0 | storage
space and at most Σ i = 1

n Si - | P1
0 ∪ …∪ Pn

0 | space can be
left for additional objects to insert into. And therefore at
most min{Σ i = 1

n Si - | P1
0 ∪ …∪ Pn

0 |, m - | P1
0 ∪ …∪ Pn

0 |}
objects can be inserted into the NSCC group during these
IBR iterations.

Regarding that whether an NSCC game would
converge to a Nash equilibrium placement, we have the
following statement:

Proposition 3. A Nash equilibrium object placement
is guaranteed to find in polynomial time if the access price
model forms an ultra-metric. Otherwise, it is NP-complete
to determine the existence of a Nash equilibrium object
placement.

Proof. Gopalakrishnan et al. proved proposition 3 in
[17].

That the access “price” function forms an ultra-metric
means that ∀i, j, k, di,k ≤ max{di,j, dj,k}. More specifically,
in the ultra-metric space, it is preferable for a node to
access another node in the NSCC group via their direct link
rather than that via a third node. Of course, we prefer Nash
equilibrium object placements as they satisfy the rational
participation constraints of all nodes, and meanwhile,
offer additional stability. Actually in all our simulations,
we find Nash equilibrium object placements (after at
most nine rounds). But it is cost reduction rather than the
stability that promotes the cooperation among these selfish
nodes. Even if Nash equilibrium object placements do not
exist, we can enforce that nodes cannot deviate from the
committed object placement. Otherwise they will be kicked
out from the NSCC group so that they have no incentive
to deviate as their losses outweigh gains in the long term.
In the next subsection, an example shows that with IBR
method, sometimes certain node(s) may not be rational, but
additional condition is placed on the IBR such that nodes in
the NSCC group would be always rational.

357Study on the Theoretical Framework of Not So Cooperative Caching

4.2	 Individual Rationality
In this subsection, we examine in which cases the

rational participation constraint can be satisfied for all
selfish nodes in the group. We first demonstrate that, with
an example and comparing TSLS with NSCC, in a scenario
where the access “prices” of different node pairs differ, the
participation constraints of certain nodes may be violated in
the object placement obtained from TSLS [5] which ignores
the access “price” difference.

Example 1 . F igure 2 shows an NSCC group
comprised of three selfish nodes indexed by 1, 2, 3, each
with caching capacity of S1 = 1, S2 = 2, S3 = 1. The set of
objects that may be requested by these nodes is {1,2,3,4}
and the request rates2 at the three nodes are r1 = r2 = r3 =
{0.5,0.25,0.15,0.10}. We assume for i = 1,2,3, di,i = 0, di,4 =
100, and d1,3 = 1, d1,2 = d2,3 = x is a variable within the range
of [1,60].

Figure 2 The Topology of Example 1

Under GL, the object placements at the three nodes
are P1 = P3 = {1}, P2 = {1,2}. Under TSLS (tl = 0, tr = 1,
ts = 100), if these nodes play according to their indices,
the resulting placement is P1 = {3}, P2 = {2,4}, P3 = {1}.
However, if x, the costs for node 2 to fetch data from node
1 or from node 3 are large, this may cause the violation
of the participation constraint of node 2. This is indeed
as shown in Figure 3, where for 38.46 < x < 60, the cost
of node 2 under TSLS is greater than that under GL. In
contrast, under NSCC, while P1 = {3}, P3 = {1} hold all
the time, for 1 ≤ x < 20, P2 = {2,4} where the cost of node
2 coincides with that under TSLS; but for 20 < x < 60, P2 =
{1,2}, where its cost is still smaller than that under GL.

The previous example shows that in the scenario where
the costs of accessing an object between different nodes
vary and the rationality of certain node is not satisfied under
TSLS, NSCC offers alternative object placement such that
the rationality is guaranteed.

But one also can easily construct examples in which, at
some iteration of IBR, the rational participation constraints
of certain nodes in NSCC are not satisfied, i.e., nodes are
not always rational.

Example 2. Given three selfish nodes indexed by
1, 2, 3, with cache capacity S1 = S2 = S3 = 3, and five

2	 Note that the request rates in this example are not normalized.

distinct objects {1,2,3,4,5} that may be requested by
them. The topology of the three nodes are shown in
Figure 4 and for i = 1, 2, 3, di,i = 1, di,4 = 12 and d1,2 = 5,
d1,3 = 10. The access patterns at the three nodes are r1 =
{0.32,0.28,0.22,0.11,0.07}, r2 = {0.34,0.20,0.17,0.16,0.13},
and r3 = {0.33,0.27,0.20,0.13,0.07}.

Figure 4 The Topology of Example 2

If under GL, each node chooses its most popular
objects to store and thus P1 = P2 = P3 = {1,2,3}. And the
resulting costs at the three nodes are 2.98, 4.19 and 3.20
respectively.

When following the IBR method and nodes play
the game according to their indices, then after one
round, the object placement would be P1 = {1,2,4},
P2 = {1,2,5}, P3 = {1,3,4} and the resulting individual
node costs are 3.26, 2.32 and 2.36 separately. Since 3.26 >
2.98, node 1 is not rational at all. Therefore, IBR cannot
guarantee nodes are always rational.

Nevertheless, the following definitions give additional
condition on IBR such that nodes are always rational.

Definition 4: (Possible Maximum Eviction Loss)
For an object k ∈ Pi

0, at iteration 1, node i computes the
possible maximum eviction loss of object k based on P-i

(l, i-1)
as follows:

	 � (5)

where dik
min = min{di, j | j < i, k ∈ Pj

1} denoting the minimal
cost of fetching it from nodes (before node i) that have
committed to cache object k, and dik

max = max{di, j | j > i,
k ∈ Pj

0} representing the maximal cost of fetching it from
nodes after node i. The possible maximum eviction loss

Figure 3	The Cost of Node 2 under Different Object Placement
Strategies in Example 1

Journal of Internet Technology Volume 15 (2014) No.3358

should be the product of its request rate and the difference
between the cost of fetching it from the possible most
“expensive” node and that from local cache. And the
possible most “expensive” node is chosen as follows. If
some of the first i-1 nodes have already committed to host
object k (i.e., k ∈ ∪j<i Pj

1), the possible most “expensive”
node would be the “cheapest” node that commits to hold it.
Otherwise if object k is cached at some nodes after node i
(i.e., k ∉ ∪j<i Pj

1, k ∈ ∪j>i Pj
0), the possible most “expensive”

node would be the most “expensive” node (after node i)
that caches object k as these nodes after node i may evict
object k, but it can guarantee that at least one copy would
be kept in the NSCC group as proved in proposition 1.
Otherwise, the possible most “expensive” node is indeed
the original source.

Definition 5: (Possible Minimum Insertion Gain)
For an object k ∉ Pi

0, at iteration 1, node i computes the
possible maximum insert gain of object k based on P-i

(l, i-1)
as follows:

	 � (6)

where dik
(i-1,min) = min{di, j | j < i, k ∈ Pj

1} representing the
minimal cost of fetching it from those that have committed
to cache it, and dik

(i+1,min) = min{di, j | j > i} denoting the
minimal cost of fetching it from those (after node i) that
have the potential to cache it. The possible minimum
insertion gain should be the product of its request rate
and the difference between the cost of fetching it from the
possible “cheapest” node and that from local cache. The
possible “cheapest” node is chosen among those that have
committed to cache it and those that have the potential to
cache it. And for nodes after node i, any may choose to
cache object k.

Definition 6: (Conservative Response) For the one
round game starting from the object placement under GL,
a node would replace an object in its cache if and only if
the minimum possible insertion gain of the inserted object
is larger than the maximum possible eviction loss of the
replaced one.

Proposition 4. If each node gives conservative
response and the NSCC game plays one round, each node
is rational in the resulting object placement.

Proof. The proposition is proved by the definition of
conservative response since the conservative responses
guarantee that at each node, each replacement results in
cost reduction anyway.

4.3	 Potential Gain of a Node by Playing Again
The potential gain of a node by playing again is defined

as the cost reduction of the node if it plays again after a few

rounds of IBR and it serves as the incentive for the node to
play again.

A node may choose to play again if some of its local
cached objects are cached in certain subsequent nodes to
which the access “prices” from this node are “cheap” and
thus the node would benefit by evicting such objects; or if
some objects just evicted by this node are also evicted in
certain subsequent nodes to which the access “prices” from
this node are “cheap” and thus the node would benefit by
reinserting such objects.

Meanwhile, the aforementioned two cases also serve
as the reasons that some node(s) may lose after playing
again as even though the node(s) makes the right placement
decision(s) based on the current residual object placement,
the actions (eviction and insertion) of subsequent nodes
may cause the decisions made by these nodes playing first
to be unreasonable.

In the performance evaluation section, with numerical
examples, we show that only a few nodes benefit from
playing again after the first round and the gains are small
as compared to their costs. That said, nodes have little
incentive to play again after the first round.

4.4	 Complexity Analysis
In NSCC, each participant takes part in the decision-

making process, which convinces these selfish nodes. We
analyze the corresponding time and space complexity of the
NSCC game in this section.

Firstly, each node has to determine its initial object
placement by sorting the request rates of objects which
takes time O(mlgm). This specific decision making at a
node does not rely on anything at other nodes and thus
these nodes can make the decisions in parallel.

Then in each round of IBR, any node i should compute
the insertion gain for each object and sort these gains in
descending order, which takes time O(m+mlgm) altogether.
And then if the local object placement is changed, the node
should announce the changes to other nodes. If in NDN
where multicast is naturally supported, it may be enough
that the node just sends the determined object placement
once which takes time O(Si); otherwise if in IP networking,
the node may have to send its determined object placement
to any other participants which takes time O((n-1)Si). So
in each round, the time that node i takes is bounded by
O(m+mlgm)+(n-1)Si) = O(nm+mlgm). As nodes play the
game one by one, these nodes take time O(n(nm+mlgm)) =
O(n2m+nmlgm) altogether. And thus the time complexity
would be O((mlgm+N(n2m+nmlgm)) where N is the
number of IBR rounds that the NSCC game plays. In all
our numerical examples, the algorithm stops after at most
nine rounds, and as discussed in Subsection 4.3, these
selfish nodes have little incentive to play again after the

359Study on the Theoretical Framework of Not So Cooperative Caching

first round, so the NSCC game may practically take time
O(mlgm+n2m+nmlgm).

The space consumption at any node i is comprised
of three components: the storages of the access “prices”
di,js from this node to other nodes in the group, the global
object placement P, and the insertion gain values of objects
gik(P-i)s, which take space n-1, Σ i = 1

n Si and m separately.
And therefore the required memory space at each node is
bounded by O(n-1+nm+m).

5	 Performance Evaluation

In this section, we study how NSCC improves access
costs of selfish nodes in an NSCC group with numerical
examples. We are interested in analyzing cases where
these selfish nodes have similar access patterns (object
preferences) so that they can mutually benefit by implicit
cooperation. Many measurement studies have observed
heavy-tailed or Zipf distributions (i.e., the ith popular object
has a request probability proportional to 1/is where s is the
Zipf preference) in request popularities (e.g., [21-22]). Our
popularity statistics of web request traffic collected from
the edge of JiangSu Education and Research NETwork
(JSERNET) on March 27, 2012 as illustrated in Figure 5
and Fayazbakhsh et al.’s statistics of request logs collected
from three CDN vantage points [23] reconfirm such heavy-
tailed behavior in recent workloads. So we assume the
access pattern at any node i follows Zipf distribution with
exponent s in our simulations. Without loss of generality,
we assume all caches have the same cache capacity in terms
of the number of unit-sized objects for all our simulations.

Figure 5	Request Popularity Distribution of Web Requests from
JSERNET

To be realistic, in Subsections 5.1 and 5.2, we conduct
simulations on the PoP-level topology of AS 209 (58 PoP
nodes and 108 links) from [24] (we treat PoP nodes in the
underlying network as nodes with caching capability and
they are competitive and selfish) and delays on links are
treated as the access “prices” between PoP nodes. Figure
6 shows the Cumulative Distribution Function (CDF) of
access “prices” between PoP nodes and it can be seen that

90% node pairs have access “prices” smaller than 50ms and
99.8% node pairs have access “prices” smaller than 90ms.
And we set the access “prices” from any node i = 1, 2, …,
58 to original content sources, i.e., di,59, to be 130 ms for
simulations conducted in this topology.

Figure 6 The CDF of Access “Prices” between PoPs in AS 209

We compare the costs of nodes under NSCC against
that under GL and against that under TSLS (under TSLS, ts

is set to the average of the access “prices” for any caches to
access data from other caches). To study the gain of playing
again in NSCC, we show the costs after one round of IBR
and that after multirounds.

5.1	 Impact of Access Patterns at Nodes
For the evaluation of the impact of access patterns, to

draw more insightful conclusions, this work considers the
following three cases of nodes’ access patterns [25]:

yy Case 1: the access patterns at different nodes follow the
same Zipf distribution with exponent s and the rank of
objects remains the same for all nodes.
yy Case 2: the rank of requested objects at different nodes
remains the same, but the access patterns follow Zipf
distribution with different exponents: they become more
concentrated around the most popular objects as the node
index i increases.
yy Case 3: the access patterns at different nodes follow the
same Zipf distribution but the ranking of a given object
changes for different nodes (i.e., the objects at a specific
ranking at nodes differ).

In the three cases, we set that there are 1,000 unit-sized
objects that may be requested by these nodes and each node
is with a caching capacity of 10 objects. And the result for
each specific simulation is averaged over 500 runs, where
at each run a random permutation of the order of play is
selected.
5.1.1	 Case 1

We conduct simulations with different Zipf exponents s
from 0.6 to 1.5 [21][26] and Figure 7(a) shows the average
access cost over all nodes under different placement
strategies. It can be seen that, in different scenarios, TSLS
and NSCC both reduce the average node access costs as

Journal of Internet Technology Volume 15 (2014) No.3360

compared to that under GL (on average, by 39.91% and
67.67% separately) and NSCC further reduces the average
node access costs by on average, 27.76% from that under
TSLS. Hence, compared to TSLS, NSCC is more suitable
for enabling selfish nodes to cooperate in caching when the
access “prices” of different nodes pairs are various and they
have the same access patterns. And the reason should be
that under TSLS, when a node makes placement decisions,
it does not realize that some popular objects are stored at
nodes from which too “expensive” to fetch data such that
they should be locally cached.

Moreover, as the Zipf exponent s increases, even
though the caching capacity of the group does not change,
the average node access costs under different placement
strategies are all reduced and the rates of average node
access cost reduction decrease. This is because the access
patterns become heavier-tailed with the increase of the Zipf
exponent s such that the frequencies at which these nodes
access the objects that are not cached in the group reduce,
and the reduction of the frequencies becomes smaller and
smaller.
5.1.2	 Case 2

The request rates over the objects k = 1, 2, …, m at
different nodes are drawn from Zipf distributions with
different exponents s (within the range of [0.6, 1.0]). More
particularly, we set that node 1 has access pattern following
Zipf distribution with exponent s = 0.6. Then, for node i = 2,
3, …, n, s is increased by p(i-1) and p = (1.0 – 0.6) / (n-1).
The results of average access cost of each node (over 500
runs) are illustrated in Figure 7(b). As shown, the node
access costs under TSLS and under NSCC are reduced
as compared to that under GL (on average, by 41.72%
and 64.35%) and NSCC outperforms TSLS. And as node
index increases, i.e., as Zipf preference s increases, the
node access costs primarily present a trend of decreasing
since nodes’ access patterns become heavier and heavier-
tailed. However, at nodes 23, 26, 30 and 58, in the lines of
TSLS and NSCC, spikes are seen. We dig into the topology
data and find out that the average access “prices” to other
nodes from the four nodes 58, 23, 26, 30 are the four most
“expensive” which are higher than others by multiple times
(up to 2.5 to 6 times). That said, the high access “prices”
from the four nodes to others contribute to their large costs.
5.1.3	 Case 3

The access patterns at all nodes follow Zipf distribution
with a typical exponent s = 0.73 (see e.g., [21][26]). In
order to establish dissimilarity in the nodes’ interests, the
rank of objects at node 1 is assigned [1, 2, …, m] (m = 1,000)
and this rank is shifted to the left by different positions for
each of the other nodes. In general, the rank of objects at
node i, i = 2, …, n (n = 58) is shifted by k(i-1) positions,
where k is the shift parameter. For example, when k = 1, the

ranking of objects at node 2 is [2, 3, …, m, 1], that at node
3 is [3, 4, …, m, 1, 2], and so on. We consider different
values of the shift parameter k (k(n-1) < m, then k = 1, 2, …,
17) and the average node access costs under different shift
parameters are shown in Figure 7(c).

It can be seen that the average node access costs under
TSLS and under NSCC are reduced as compared to that
under GL (on average, by 51.59% and 56.31% separately).
Under NSCC, as the shift parameter k increases, when
k ≤ 10, the average node access cost hardly changes, but
when k > 10, it tends to increase. The reason is that as the
dissimilarity in the nodes’ interest increases to a certain
degree, nodes tend to cache their own most popular objects
and less and less popular objects can be shared between
nodes such that nodes have to access less popular objects
from original content sources. This demonstrates that
NSCC performs better when nodes’ access patterns are
more similar. Another interesting observation is that as the

(a)

(b)

(c)

Figure 7	Average Node Access Costs under Different Placement
Strategies and with Different Access Patterns

361Study on the Theoretical Framework of Not So Cooperative Caching

dissimilarity in the nodes’ interest increases, the average
node access cost under TSLS gradually approaches that
under NSCC and later they overlap. This is because as the
dissimilarity in the nodes’ interests increases, less and less
popular objects can be shared between them and the access
patterns play the decisive role in the object placement
decision processes at these nodes under NSCC obscuring
the impact of TSLS’s unawareness of large distances
between some nodes.

5.2	 Impact of Cache Capacity
In this subsection, we continue to conduct simulations

on the PoP level topology of AS 209. Likewise, we assume
there are 1,000 unit-sized objects that may be requested,
the access patterns at different nodes follow the same
Zipf distribution with exponent s = 0.73 and the rank of
requested objects remains the same for all the nodes. In
different simulations, the cache sizes vary from a capacity
of 20 objects to that of 100 objects. The average node
access costs in different simulations are illustrated in Figure
8 and the result for each simulation is averaged over 500
runs, where at each run a random permutation of the order
of play is selected.

Figure 8	Average Node Access Costs under Different Placement
Strategies and with Different Cache Sizes

As shown, in each simulation, NSCC performs best
among the three placement strategies and reduces the
average node access cost (on average) by 88.18% as
compared to under GL, a significant gain that attracts nodes
to join NSCC group (TSLS accordingly reduces the average
node access cost on average by 70.46% as compared
to under GL). And as the cache sizes of nodes increase,
the average node access costs under different placement
strategies are all reduced and the rates of reduction decrease
since while more objects can be cached in the group, these
additionally cached objects are accessed by nodes with
smaller and smaller frequencies. Moreover, under NSCC,
when cache sizes of nodes are larger than 30 (the caching
capacity of the NSCC group is 30 × 58 = 1,740 > 1,000
objects), the average node access costs are not reduced
any more as all requested objects are already cached in

the group and more storage space would not make much
difference.

5.3	 Impact of the Order Of Play
In this subsection, we study the impact of the order of

play on individual node access costs. The studied NSCC
group is comprised of five selfish nodes and their topology
and access “prices” between each other (we choose
“cheapest” path between two nodes) are shown in Figure
9 (note that ∀i = 1, 2, …, 5, di,6 = 100). We set there are 50
objects in the system and the caching capacity of each node
is 10 objects. And we assume the access patterns at all the
nodes follow the same Zipf distribution with exponent s =
0.73 and the rank of these objects remains the same at all
five nodes.

Figure 9	The Topology of an NSCC Group Comprised of Five
Selfish Nodes

The access costs of individual nodes under different
placement strategies and with three different node orderings
are evaluated (under TSLS, ts is set to the average access
“prices” of all node pairs) and are illustrated in Figure 10.
For each node i, we compute its average access “price”
from other nodes like this avg_Di = 1

N - 1 d(i, j). The
studied three node orderings are (a) random order, (b) the
node with Least average access “Price” play First (LPF),
and (c) the node with Most average access “Price” play
First (MPF) (note that the ordering is the same at each
round of NSCC).

In the three orderings, both TSLS and NSCC
outperform GL policy, producing smaller access costs at
individual nodes (on average, the individual node access
costs are reduced by 35.77% and 47.32% separately) such
that participation constraints are satisfied; and NSCC
still outperforms TSLS. It can be computed that after
multirounds, the average access costs of these nodes with
random order, LPF and MPF are 26.21, 25.31 and 27.12
cost units respectively; the maximum access costs among
these five nodes with random order, LPF and MPF are
27.98, 27.07 and 29.15 separately; and the variance of
individual node access costs with random order, LPF and

Journal of Internet Technology Volume 15 (2014) No.3362

MPF are 6.31, 5.72 and 19.23 respectively. The above
statistics suggest that among the three orderings, with the
LPF ordering, the NSCC game performs the best since
nodes tend to serve its requests with least access costs and
the node with the maximum cost (i.e., with least incentive
to cooperate) is the happiest among the three orderings, i.e.,
nodes are treated in the fairest way with LPF ordering in
this simulation. The reason is that under the LPF ordering,
the NSCC game results in that objects with high request
rates are cached at nodes which pay higher average access
“prices” such that the access cost of such nodes would be
reduced; meanwhile, the subsequent popular objects are
cached at nodes starting from the one with the least average
access “price” to the one with the largest average access
“price” such that these subsequent popular objects can be

accessed by nodes with “cheaper price.” In contrast, with
the MPF ordering, the most popular objects are stored
at the node with the least average access “price” and the
subsequent popular objects are cached at nodes starting
from the one with the largest average access “price” to the
one with the least average access “price.”

Another interesting observation shown in Figures 7, 8
and 10 is that the gains of playing again are negligible as
compared to the access costs after the first round; and in
Figure 10, by playing again, the individual access costs of
some nodes are reduced, but at the expense of others. The
potential gain of each node by playing again with different
orderings under NSCC strategy in Figure 10 is shown in
Table 1. With the three orderings, only nodes playing first
benefit by playing again (Nodes 4, 2 and 3 respectively)
at the expense of others. It can be seen that the gains by
playing again are small as compared to the cost values and
thus nodes have little incentive to play again (the gains
by playing again may not even cancel out the cooperation
overhead in playing again).

Table 1	Potential Gain of Each Node by Playing Again after the
1st Round

Node 1 2 3 4 5
LPF 0 0 0 0.67 0
MPF 0 0.73 0 0 0
random order 0 0 0.25 0 0

6	 Conclusion & Future Work

This work proposes a scheme that enables selfish nodes
to cooperate in caching, here dubbed Not So Cooperative
Caching (NSCC). We consider a network comprised
of selfish nodes; each is with caching capability and an
objective of reducing its own access cost by fetching data
from local cache or from other caches. The challenge is
to determine what objects to cache at each node so as to
induce low individual node access costs, and the realistic
access “price” model which allows various access “prices”
of different node pairs further complicates the decision
making process.

Using a game-theoretic approach -- Iterative Best
Response (IBR), and taking the various access “prices”
into account, NSCC seeks a global object placement in
which the access costs of individual selfish nodes would be
reduced as compared to that if they operate in isolation so
as to incur implicit cooperation even among these selfish
nodes. In the distributed algorithm IBR, each node makes
its own placement decisions based on its local access
pattern, the object placements at other nodes and the access
“prices” from this node to other nodes. We analyze the

(a) Random Order

(b) LPF Order

(c) MPF Order

Figure 10	 Individual Node Access Costs under Different
Placement Strategies and with Different Node
Orderings

363Study on the Theoretical Framework of Not So Cooperative Caching

performance of NSCC both in theory and with extensive
numerical examples. Although individual node rationality
(i.e., not loosing by participation) is not guaranteed, NSCC
achieves such rationality easier relative to other placement
strategies. Furthermore, if each node gives conservative
response in IBR method, individual node rationality can be
improved. Our extensive experiments show that in almost
every case, NSCC reduces individual node access costs as
compared to the greedy local or previous work (TSLS) that
ignores the difference in access “prices.” NSCC performs
better when nodes follow more similar access patterns and
is more efficient when users’ access patterns are less heavy-
tailed. Finally, NSCC allows for a fairer treatment of nodes
according to their average access “prices” to other nodes.

Our next step is to further extend our work to the cases
that allow nodes in the group fail with some probability,
which is common in the network environment and thus is
further anchored in reality, and to show how the scheme
can be implemented in Information Centric Networking
such as Named Data Networking featuring routing by
name, multipath routing and in-network caching despite
node failure and node cheating.

Acknowledgements

We are grateful to anonymous reviewers of Journal
of Internet Technology. This work was conducted under
the support of Jiangsu Key Laboratory of Computer
Networking Technology and the Key Laboratory of
Computer Network and Information Integration (Southeast
University), Ministry of Education. And this work was
sponsored by the National Grand Fundamental Research
973 program of China under Grant No. 2009CB320505,
the National Nature Science Foundation of China under
Grant No. 60973123, and the Technology Support Program
(Industry) of Jiangsu under Grant No. BE2011173. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of those sponsors.

References

[1]	 Jussi Kangasharju, James Roberts and Keith W. Ross,
Object Replication Strategies in Content Distribution
Networks, Computer Communication, Vol.25, No.4,
2001, pp.376-383.

[2]	 Madhukar R. Korupolu and Michael Dahlin,
Coordinated Placement and Replacement for Large-
Scale Distributed Caches, IEEE Transactions on
Knowledge and Data Engineering, Vol.14, No.6,
2002, pp.1317-1329.

[3]	 Sem Borst , Varun Gupta and Anwar Walid ,
Distributed Caching Algorithms for Content
Distribution Networks, Proc. INFOCOM’10, San
Diego, CA, March, 2010, pp.1478-1486.

[4]	 Jason-Min Wang, Jun Zhang and Brahim Bensaou,
Intra-AS Cooperative Caching for Content-Centric
Networks , Proc. of the 3rd ACM SIGCOMM
Workshop on Information-Centric Networking, Hong
Kong, China, August, 2013, pp.61-66.

[5]	 Nikolaos Laoutaris, Orestis Telelis, Vassilios
Zissimopoulos and Ioannis Stavrakakis, Distributed
Selfish Replication, IEEE Transactions on Parallel
and Distributed Systems, Vol.17, No.12, 2006,
pp.1401-1413.

[6]	 Mark Gritter and David R. Cheriton, An Architecture
for Content Routing Support in the Internet, Proc.
of the 3rd Conference on USENIX Symposium on
Internet Technologies and Systems, San Francisco,
CA, March, 2001, pp.37-48.

[7]	 Teemu Koponen, Mohit Chawla, Byung-Gon Chun,
Andrey Ermolinskiy, Kye-Hyun Kim, Scott Shenker
and Ion Stoica, A Data-Oriented (and beyond)
Network Architecture, ACM SIGCOMM Computer
Communication Review, Vol.37, No.4, 2007, pp.181-192.

[8]	 Van Jacobson, Diana K. Smetters, James D. Thornton,
Michael F. Plass, Nicholas H. Briggs and Rebecca
L. Braynard, Networking Named Content, Proc. of
CoNEXT’09, Rome, Italy, December, 2009, pp.1-12.

[9]	 Jarno Rajahalme, Mikko Särelä, Pekka Nikander
and Sasu Tarkoma, Incentive-Compatible Caching
and Peering in Data-Oriented Networks, Proc. of
CoNEXT’08, Madrid, Spain, December, 2008, pp.1-6.

[10]	 Enric Herrero, José González and Ramon Canal,
Distributed Cooperative Caching: An Energy
Efficient Memory Scheme for Chip Multiprocessors,
IEEE Transactions on Parallel and Distributed
Systems, Vol.23, No.5, 2012, pp.853-861.

[11]	 Ji-Chuan Chang and Gurindar S. Sohi, Cooperative
Caching for Chip Multiprocessors, Proc. of ISCA’06,
Boston, MA, June, 2006, pp.264-276.

[12]	 Byung-Gon Chun, Kamalika Chaudhuri, Hoeteck
Wee, Marco Barreno, Christos H. Papadimitriou and
John Kubiatowicz, Selfish Caching in Distributed
Systems: A Game-Theoretic Analysis, Proc. of the
Twenty-Third Annual ACM Symposium on Principles
of Distributed Computing, Newfoundland, Canada,
July, 2004, pp.21-30.

[13]	 Eva Jaho, Ioannis Koukoutsidis, Ioannis Stavrakakis
and Ina Jaho, Cooperative Content Replication
in Networks with Autonomous Nodes, Computer
Communication, Vol.35, No.5, 2012, pp.637-647.

Journal of Internet Technology Volume 15 (2014) No.3364

[14]	 Eva Jaho, Ioannis Koukoutsidis, Ioannis Stavrakakis
and Ina Jaho, Cooperative Replication in Content
Networks with Nodes under Churn , Proc. of
NETWORKING’08, Singapore, May, 2008, pp.457-
469.

[15]	 Avraham Leff, Joel L. Wolf and Philip S. Yu,
Replication Algorithms in a Remote Caching
Architecture, IEEE Transactions on Parallel and
Distributed Systems, Vol.4, No.11, 1993, pp.1185-
1204.

[16] Gerasimos G. Pollatos, Orestis A. Telelis and
Vassilis Zissimopoulos, On the Social Cost of
Distributed Selfish Content Replication, Proc. of
NETWORKING’08, Singapore, May, 2008, pp.195-
206.

[17]	 Ragavendran Gopalakrishnan, Dimitrios Kanoulas,
Naga Naresh Karuturi, C. Pandu Rangan, Rajmohan
Rajaraman and Ravi Sundaram, Cache Me If You
Can: Capacitated Selfish Replication Games, Proc.
of 10th Latin American Symposium, Arequipa, Peru,
April, 2012, pp.420-432.

[18]	 Ozgur Ercetin and Leandros Tassiulas, Market-Based
Resource Allocation for Content Delivery in the
Internet, IEEE Transactions on Computers, Vol.52,
No.12, 2003, pp.1573-1585.

[19]	 Panayotis Antoniadis, Costas Courcoubetis and Robin
Mason, Comparing Economic Incentives in Peer-to-
Peer Networks, Computer Networks, Vol.46, No.1,
2004, pp.133-146.

[20]	 Martin J. Osborne and Ariel Rubinstein, A Course in
Game Theory, MIT Press, Boston, MA, 1994.

[21]	 Lee Breslau, Pei Cao, Li Fan, Graham Phillips
and Scott Shenker, Web Caching and Zipf-Like
Distributions: Evidence and Implications, Proc. of
INFOCOM’99, New York, March, 1999, pp.126-134.

[22]	 Phillipa Gill, Martin Arlitt, Zongpeng Li and Anirban
Mahanti, Youtube Traffic Characterization: A View
from the Edge, Proc. of IMC’07, San Diego, CA,
October, 2007, pp.15-28.

[23]	 Seyed Kaveh Fayazbakhsh , Yin Lin , Amin
Tootoonchian, Ali Ghodsi, Teemu Koponen, Bruce M.
Maggs, K. C. Ng, Vyas Sekar and Scott Shenker, Less
Pain, Most of the Gain: Incrementally Deployable
ICN, Proc. of SIGCOMM’13, Hong Kong, China,
August, 2013, pp.147-158.

[24]	 Neil Spring, Ratul Mahajan and David Wetherall,
Measuring ISP Topologies with Rocketfuel, Proc. of
SIGCOMM’02, Pittsburgh, PA, August, 2002, pp.133-
145.

[25]	 Eva Jaho, Merkouris Karaliopoulos and Ioannis
Stavrakakis, Social Similarity as a Driver for Selfish,
Cooperative and Altruistic Behavior, Proc. of the

2010 IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks,
Montreal, Canada, June, 2010, pp.1-6.

[26]	 Hazem Gomaa, Geoffrey Messier, Robert Davies
and Carey Williamson, Media Caching Support
for Mobile Transit Clients, Proc. of the 2009 IEEE
International Conference on Wireless and Mobile
Computing, Networking and Communications,
Marrakech, Morocco, October, 2009, pp.79-84.

Biographies

Xiaoyan Hu, a PhD candidate in School
of Computer Science and Engineering,
Southeast Univers i ty, focuses her
research interests on information centric
networking, in-network caching and
scalable name-based routing. She received

her BS in software engineering from Nanjing University of
Science and Technology, and MS in computer architecture
from Southeast University.

Jian Gong is a professor in School of
Computer Science and Engineering,
Southeast University. His research
interests are network architecture,
ne twork in t rus ion de tec t ion , and
network management. He received
his BS in computer software from

Nanjing University, and his PhD in computer science and
technology from Southeast University.

