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Abstract

This work proposes a scheme that enables selfish nodes 
to cooperate in caching, here dubbed Not So Cooperative 
Caching (NSCC). We consider a network comprised 
of selfish nodes; each is with caching capability and an 
objective of reducing its own access cost by fetching data 
from local cache or from other caches. The challenge is 
to determine what objects to cache at each node so as to 
induce low individual node access costs, and the realistic 
access “price” model which allows various access “prices” 
of different node pairs further complicates the decision 
making. Using a game-theoretic approach and considering 
the various access “prices,” NSCC seeks a global object 
placement in which individual node access costs are 
reduced as compared to that when they operate in isolation 
(referred to as GL) so as to incur implicit cooperation even 
among these selfish nodes. Our extensive experimental 
results demonstrate that in most cases, NSCC outperforms 
previous work (TSLS) which ignores the difference in 
access “prices,” reduces individual node access costs by on 
average, more than 47.32% as compared to GL, and allows 
for a fairer treatment of nodes according to their average 
access “prices.”

Keywords: Content caching, Selfish nodes, Game, Various 
access prices.

1 Introduction

This work proposes a scheme that enables selfish nodes 
to cooperate in caching. We consider a network comprised 
of selfish nodes; each is with caching capability and an 
objective of reducing its own access cost. The model 
assumes that the “price” of accessing an object from a 
node’s local cache is minimal, and that from other caches 
are larger but smaller as compared to that from original 
data sources (e.g., fetching data from local cache or from a 
neighboring cache may reduce latency, load on potentially 
expensive upstream links, and so forth). The challenge is 
to determine what objects to cache at each node (resulting 
in a global object placement) such that these selfish nodes 
have incentive to join the cooperation. 

This work is similar to “Cooperative Caching” [1-4], 
but dubbed Not So Cooperative Caching (NSCC) as each 
node seeks to maximize only its own benefit in terms of cost 

reduction rather than common welfare, which may come at 
the expense of others. These selfish nodes make placement 
decisions based on only local request patterns regardless 
of requests from other nodes. However, these selfish nodes 
can still implicitly cooperate by sharing their cached data. 
Then with limited storage space, each node can make its 
placement decisions based on the placement decisions at 
other nodes with an attempt to greedily minimize its own 
cost of serving all its requests. But as a rational and selfish 
entity, a node would join the cooperation if and only if its 
cost would be reduced as compared to that when it operates 
in isolation using Greedy Local strategy (GL) to cache its 
most popular objects, which is the rational participation 
constraint (i.e., mistreatment-free). 

Laoutaris et al. [5] devised a mistreatment-free TSLS 
policy based on a game-theoretic formulation for selfish 
replication. A key assumption in developing TSLS is 
that the “prices” of accessing an object between nodes 
are equal which is fairly impractical. In Section 4, with 
an example, we show that in certain scenarios where the 
access “prices” of different node pairs differ, TSLS which 
ignores access “price” difference may even cause the cost 
of certain node(s) to be larger than that under GL. So this 
work generalizes the problem in [5] to the more practical 
scenarios which allow various access “prices” of different 
node pairs and thus each node has to distinguish copies 
of an object at different caches according to their access 
“prices” when making caching decisions. Considering 
the selfishness and rationality of NSCC nodes and the 
conflict and cooperation between them, a game-theoretic 
approach is applied to identify a global object placement 
which satisfies the rational participation constraints of all 
nodes (called a guaranteed object placement) so as to incur 
implicit cooperation even among these selfish nodes as 
they attempt to do better than that under GL. Note that in 
NSCC, once nodes commit to a specific object placement, 
they cannot deviate from it (i.e., no replacement is allowed) 
until the game is re-invoked and thus NSCC refers to object 
caching for a longer term. Our extensive experimental 
results demonstrate that in most cases, NSCC outperforms 
TSLS, reduces individual node access costs by on average, 
more than 47.32% compared to GL, and allows for a 
fairer treatment of nodes according to their average access 
“prices.”

We believe NSCC is a necessary evolution of 
cooperative caching in the emerging world of Information 
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Centric Networking (ICN) such as TRIAD [6], DONA [7] 
and NDN [8]. Many ICN network architectures feature 
routing by name and in-network caching capability 
to improve performance. NSCC is well-suited to the 
cooperation among NDN border routers with caches at the 
network layer [9]. As such, existing and future applications 
would benefit from caching without requiring specific 
configurations. 

2 Related Work

Cooperative caching among file/web ecaches [1-4] 
or among L2 caches in a multiprocessor system [10-11] 
seeks a “globally beneficial placement” of items to improve 
cache hit ratio and item access latency for the whole 
system (i.e., common welfare). Such caches belong to one 
organization and share no fundamental conflict of interests 
but broad common interest. They would like to agree upon 
a “globally beneficial placement,” e.g., in [10], a L2 cache 
spills replaced blocks to other L2 caches to avoid future 
off-chip accesses and the latter host cache accepts such 
placement, which may result in the eviction of data at the 
host cache (as a subsequent spill is not allowed). However, 
a “globally beneficial placement” is much harder to achieve 
in a network with selfish caches (our NSCC case) than in a 
network with caches friendly to each other, as in the former, 
caches behave as rational entities that aim at maximizing its 
own benefit, which may come at the expense of others. 

To the best of our knowledge, there are only a few 
recent works on game-theoretic aspect of cooperative 
caching. The work in [12] which serves as the seminal 
work on game-theoretic aspect of cooperative caching 
studies selfish cooperative caching without consideration 
of storage limitation. But cache-capacity limitation models 
an important real-world restriction and hence the following 
works [5][13-14] focus on the capacitated version which 
is left as an open direction by [12]. They all consider 
distributed and capacitated selfish caching and follow 
the simplified access “price” model introduced in [15] 
where nodes are equidistant (equal access “price”) from 
one to another and a special data source holds all objects. 
The work in [5] devises a cooperative caching strategy 
(TSLS) among selfish nodes such that Nash equilibrium 
object placement is obtained. However, our work shows 
that with TSLS, in a realistic environment where different 
node pairs are with different access “prices”, access costs 
of certain nodes may be even larger than that when they 
operate in isolation. The work in [13-14] extends the work 
in [5] with node churn, i.e., random changes in the set of 
participating nodes in the group that may occur due to 
“join” and “leave” events, and studies corresponding game 
theoretic properties. Pollatos et al. [16] slightly extend the 

work in [5] to the case that where special data sources for 
different objects are at different distances. Gopalakrishnan 
et al. [17] indeed extend the access “price” model into the 
realistic scenario which allows various access “prices” of 
different node pairs so as to model the more generic cases 
and allow a more extensive application prospect and they 
primarily focus on the discussion of the existence of Nash 
equilibrium object placements in theory, do not devise a 
feasible algorithm to seek an object placement that enables 
selfish nodes to cooperate in caching, and not to mention 
experimental analysis. Our work follows the realistic access 
price model in [17], but instead, we focus on devising 
an algorithm to seek a guaranteed object placement and 
verifying its effectiveness both in theory and with extensive 
simulations. 

Another related work was done on the market-based 
resource allocation in content delivery networks [18], 
where the authors consider only greedy local replication 
strategies. There is another line of works on incentives 
in P2P networks. e.g., Antoniadis et al. [19], study the 
problem of attracting users to a P2P network and making 
them contribute more content. The aforementioned 
work and other similar ones, formulate the problem at a 
completely different level as compared to our work, as they 
focus on the number of files shared by each node, without 
identifying the identities of these files, whereas we focus 
on identifying the exact set of files that can be shared by 
nodes.

3 Problem Formulation

We formally define the NSCC problem as follows. 
As illustrated in Figure 1, we are given a set of n selfish 
caching nodes forming a “NSCC group,” and a set of m 
unit-sized objects. The access pattern of node i is described 
by vector ri = {ri1, ri2, …, rik, …, rim} where rik is the rate at 
which node i requests object k.

Each node aims to minimize its own access cost. When 
node i accesses an object, the cost depends on the object’s 
location. Let di,j denote the cost for node i to access an 
object cached at node j, di,i denote the cost to fetch an object 

Figure 1 An NSCC Group
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from its local cache and di,n+1 denote the cost for node i to 
fetch an object from original data sources. We assume ∀i, 
j, di,i < di,j = dj,i < di,n+1, i.e., when a node accesses objects, 
local cache is preferred over other caches which are 
preferred over original data sources. The above definition 
of d is referred to as our access “price”1 mode.

The cost of a node depends on where objects are placed 
and its access pattern. Due to cache space limitation, each 
node can cache only some objects locally and must decide 
which objects to place in its cache. Let Si denote the cache 
size at node i (Si < m) and Pi denote the set of objects 
cached at node i. Similarly, all other nodes decide which 
objects to place in their caches. The result is a global object 
placement P = {P1, P2, …, Pn}. Then the cost of node i 
depends on the placement P. Let Ci(P) denote the cost of 
node i under object placement P which is computed as 
follows: 

  (1)

The cost of node i is the total access cost to serve 
requests for all the objects. The cost for node i to serve 
requests for any object k is the product of its request rate 
and the cost for node i to fetch object k which depends on 
the location from which the object is fetched, either from 
local cache, or from the “cheapest” nodes that caches object 
k or from the original source. Let Q-i = P1 ∪ ... ∪ Pi-1 ∪ 
Pi+1 ∪ ... ∪ Pn denote the set of objects collectively held by 
nodes other than node i under the global placement P = {P1, 
P2, …, Pn} and di,l(i,k) denote the cost for node i to fetch the 
object from the “cheapest” node l(i,k) that caches object k. 
More specifically, for each request for any object k, if object 
k is locally cached, it is accessed from local cache with cost 
di,i; otherwise if object k is cached at certain nodes in the 
NSCC group, it is accessed from the “cheapest” node l(i,k) 
among those that store object k with cost di,l(i,k); otherwise it 
is accessed from the original source with cost di,n+1. 

Instead, under GL, objects at node i are sorted in 
descending order by their request rates and node i caches 
the Si most popular objects. Then each object is accessed 
either from local cache or from its original source and the 
cost of node i under GL is computed as follows: 

 

  (2)

NSCC seeks a guaranteed object placement P such that 
for each node in the group, its cost would be reduced as 
compared to that under GL. And the objective is formulated 
as follows: 

1 Here, by price, we do not narrowly mean money.

	 ∀i, Ci(P) < Ci(GL) (3)

which is the participation or individual rationality constraint 
for each rational node. 

4 A Game-Theoretic Approach 

As described in the former sections, NSCC nodes are 
intelligent rational decision-makers with both conflict and 
cooperation between them and these intelligent individuals 
interact with one another in an effort to achieve their own 
goals, which is a typical game. And thus we address this 
problem in a game-theoretic context, where nodes are the 
players. Each player implements a placement strategy that 
consists of choosing which objects to store locally in its 
limited storage space, at one or more occasions in the game. 
The goal of each player is to minimize its cost of serving 
all its requests for objects at the end of the game which is 
called an NSCC game. 

Definition 1: (Best Response) Given a residual 
placement P-i = P - {Pi}, the best response for node i is the 
placement Pi ∈ Ai such that Ci(P-i + {Pi}) ≤ Ci(Pi + {Pi'}), 
∀Pi' ∈ Ai, where Ai is the set of available placements at 
node i. 

The best response at node i is computed as follows: 
gik(P-i) denotes the excess gain incurred by node i from 
replicating object k under P-i and is defined as follows: 

 

  (4)

Objects are sorted in descending order by gik(P-i) and 
the Si most valuable objects are selected to cache, which is 
the best response at node i under P-i. 

Note that we assume that each node knows the exact 
object placements at other nodes when it computes its 
best response. The cases that either certain nodes are 
misinformed, or some nodes cheat about their placements 
are not considered since nodes are enforced to be frank or 
they will be kicked out from the NSCC group. 

Definition 2: (Stable Placement) A global placement 
P is stable if and only if it is composed of individual 
placements that are best responses. 

Therefore a stable placement P* is just a Nash 
equilibrium [20] placement of an NSCC game in which 
no node can unilaterally change its placement to increase 
its gain such that additional stability achieves. And, above 
all, Nash equilibrium object placements satisfy the rational 
participation constraints that an NSCC game asks for. 
Subsection 4.1 discusses in what circumstances, there are 
Nash equilibrium object placements in NSCC games. 



Journal of Internet Technology Volume 15 (2014) No.3356

Definition 3: (Iterative Best Response [IBR]) Given 
the initial global placement P(0) as that under GL, start an 
iterative procedure where at iteration (or call it round) l, 
any node i waits for its turn to play the game once and only 
once by performing the following steps: 
Step 1: node i computes its best response Pi

(l) to P-i
(l, i-1), 

after node i-1 and before node i+1; 
Step 2: node i notifies others of its completeness and 

broadcasts its object placement changes (if there 
are) so that all nodes can compute P(l, i) = P-i

(l, i-1) + 
{Pi

(l)}.
P(l, i-1) is the global placement at iteration l after node 

(i-1)’s best response and prior to node i’s best response; 
P-i

(l, i-1) is the corresponding residual placement with respect 
to node i. The IBR search stops and returns P = P(t) when 
at iteration t: P(t) = P(t-1), i.e., when no node can profit by 
replacement. 

We use IBR to identify the guaranteed object placement 
of an NSCC game. As mentioned, in each round of IBR, 
these selfish nodes are arranged in a certain order to play 
the game and each node should know its order so that no 
nodes would play the game simultaneously. We discuss 
that the ordering of playing the game impacts the resulting 
individual node costs, i.e., impacts the fairness among 
these selfish nodes, in performance evaluation section. The 
node ordering can be the same for all rounds of IBR and 
can be determined by some rules, e.g., based on the order 
of nodes’ identifiers or their average access “prices” as 
described in the evaluation section. Or the node ordering 
can be variable for different IBR rounds and here we give 
a specific example about how these selfish nodes determine 
their ordering at each round: at each round of IBR including 
the procedure of exchanging the initial object placements 
under GL, each node generates a random nonce value and 
piggybacks the nonce value on to its object placement 
announcement. After receiving the n-1 nonce values from 
other nodes in this round, each node computes its turn in the 
next round based on the ranking of its nonce value among 
all these nonce values received from others (the range of 
nonce values should be large enough so that there is only a 
negligible chance that any two nodes are with equal nonce 
values). 

Note that as a distributed algorithm, the IBR method 
has each node make its own object placement decisions 
based on its own local access pattern, and no exact access 
pattern needs to be exposed to others, which keeps both 
autonomy and some privacy for nodes. 

4.1 The Resulting Object Placements
Regarding the resulting global object placement at each 

iteration of IBR, we can prove the followings:
Proposition 1. Each object in P1

0 ∪ …∪	Pn
0 would be 

kept at least one copy in the NSCC group. 
Proof. ∀i, ke ∈	Pi

0, ki ∉ Pi
0 then rike

 > riki
 such that object 

ke is greedily cached at node i under GL. In the following 
IBR rounds, if object ke is replaced by ki at certain step, 
then rike

 (di,l(i,ke) - di,i) < riki
 (di,l(i,ki)

 - di,i) . Since rike
 > riki

, then 
di,l(i,ke) < di,l(i,ki)

. If di,l(i,ke) = di,n+1, i.e., ke at node i is the single 
copy in the NSCC group before the replacement, then di,l(i,ki)

 
> di,n+1 which contradicts our assumption that ∀i, j, di,j < 
di,n+1. That said, an object in P1

0 ∪ …∪	Pn
0 can be evicted 

only if there are replicas of it in the NSCC group. And thus 
each object in P1

0 ∪ …∪	Pn
0 would have at least one copy in 

the NSCC group. 
Proposition 2. At most min{Σ i = 1

n  Si -	| P1
0 ∪ …∪	Pn

0 |,
 m - | P1

0 ∪ …∪	Pn
0 |} objects can be inserted into the 

NSCC group during IBR iterations. 
Proof. From proposition 1, we know that objects in 

P1
0 ∪ …∪	Pn

0 would take at least | P1
0 ∪ …∪	Pn

0 | storage 
space and at most Σ i = 1

n  Si -	 | P1
0 ∪ …∪	Pn

0 | space can be 
left for additional objects to insert into. And therefore at 
most min{Σ i = 1

n  Si -	| P1
0 ∪ …∪	Pn

0 |, m - | P1
0 ∪ …∪	Pn

0 |} 
objects can be inserted into the NSCC group during these 
IBR iterations.

Regarding that whether an NSCC game would 
converge to a Nash equilibrium placement, we have the 
following statement: 

Proposition 3. A Nash equilibrium object placement 
is guaranteed to find in polynomial time if the access price 
model forms an ultra-metric. Otherwise, it is NP-complete 
to determine the existence of a Nash equilibrium object 
placement. 

Proof. Gopalakrishnan et al. proved proposition 3 in 
[17].

That the access “price” function forms an ultra-metric 
means that ∀i, j, k, di,k ≤ max{di,j, dj,k}. More specifically, 
in the ultra-metric space, it is preferable for a node to 
access another node in the NSCC group via their direct link 
rather than that via a third node. Of course, we prefer Nash 
equilibrium object placements as they satisfy the rational 
participation constraints of all nodes, and meanwhile, 
offer additional stability. Actually in all our simulations, 
we find Nash equilibrium object placements (after at 
most nine rounds). But it is cost reduction rather than the 
stability that promotes the cooperation among these selfish 
nodes. Even if Nash equilibrium object placements do not 
exist, we can enforce that nodes cannot deviate from the 
committed object placement. Otherwise they will be kicked 
out from the NSCC group so that they have no incentive 
to deviate as their losses outweigh gains in the long term. 
In the next subsection, an example shows that with IBR 
method, sometimes certain node(s) may not be rational, but 
additional condition is placed on the IBR such that nodes in 
the NSCC group would be always rational. 
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4.2 Individual Rationality
In this subsection, we examine in which cases the 

rational participation constraint can be satisfied for all 
selfish nodes in the group. We first demonstrate that, with 
an example and comparing TSLS with NSCC, in a scenario 
where the access “prices” of different node pairs differ, the 
participation constraints of certain nodes may be violated in 
the object placement obtained from TSLS [5] which ignores 
the access “price” difference. 

Example 1 .  F igure  2  shows an NSCC group 
comprised of three selfish nodes indexed by 1, 2, 3, each 
with caching capacity of S1 = 1, S2 = 2, S3 = 1. The set of 
objects that may be requested by these nodes is {1,2,3,4} 
and the request rates2 at the three nodes are r1 = r2 = r3 = 
{0.5,0.25,0.15,0.10}. We assume for i = 1,2,3, di,i = 0, di,4 = 
100, and d1,3 = 1, d1,2 = d2,3 = x is a variable within the range 
of [1,60].

Figure 2 The Topology of Example 1

Under GL, the object placements at the three nodes 
are P1 = P3 = {1}, P2 = {1,2}. Under TSLS (tl = 0, tr = 1, 
ts = 100), if these nodes play according to their indices, 
the resulting placement is P1 = {3}, P2 = {2,4}, P3 = {1}. 
However, if x, the costs for node 2 to fetch data from node 
1 or from node 3 are large, this may cause the violation 
of the participation constraint of node 2. This is indeed 
as shown in Figure 3, where for 38.46 < x < 60, the cost 
of node 2 under TSLS is greater than that under GL. In 
contrast, under NSCC, while P1 = {3}, P3 = {1} hold all 
the time, for 1 ≤ x < 20, P2 = {2,4} where the cost of node 
2 coincides with that under TSLS; but for 20 < x < 60, P2 = 
{1,2}, where its cost is still smaller than that under GL. 

The previous example shows that in the scenario where 
the costs of accessing an object between different nodes 
vary and the rationality of certain node is not satisfied under 
TSLS, NSCC offers alternative object placement such that 
the rationality is guaranteed. 

But one also can easily construct examples in which, at 
some iteration of IBR, the rational participation constraints 
of certain nodes in NSCC are not satisfied, i.e., nodes are 
not always rational. 

Example 2. Given three selfish nodes indexed by 
1, 2, 3, with cache capacity S1 = S2 = S3 = 3, and five 

2 Note that the request rates in this example are not normalized.

distinct objects {1,2,3,4,5} that may be requested by 
them. The topology of the three nodes are shown in 
Figure 4 and for i = 1, 2, 3, di,i = 1, di,4 = 12 and d1,2 = 5, 
d1,3 = 10. The access patterns at the three nodes are r1 = 
{0.32,0.28,0.22,0.11,0.07}, r2 = {0.34,0.20,0.17,0.16,0.13}, 
and r3 = {0.33,0.27,0.20,0.13,0.07}.

Figure 4 The Topology of Example 2

If under GL, each node chooses its most popular 
objects to store and thus P1 = P2 = P3 = {1,2,3}. And the 
resulting costs at the three nodes are 2.98, 4.19 and 3.20 
respectively. 

When following the IBR method and nodes play 
the game according to their indices, then after one 
round, the object placement would be P1 = {1,2,4}, 
P2 = {1,2,5}, P3 = {1,3,4} and the resulting individual 
node costs are 3.26, 2.32 and 2.36 separately. Since 3.26 > 
2.98, node 1 is not rational at all. Therefore, IBR cannot 
guarantee nodes are always rational.

Nevertheless, the following definitions give additional 
condition on IBR such that nodes are always rational. 

Definition 4: (Possible Maximum Eviction Loss) 
For an object k ∈	Pi

0, at iteration 1, node i computes the 
possible maximum eviction loss of object k based on P-i

(l, i-1) 
as follows: 

  (5)

where dik
min = min{di, j | j < i, k ∈ Pj

1} denoting the minimal 
cost of fetching it from nodes (before node i) that have 
committed to cache object k, and dik

max = max{di, j | j > i, 
k ∈ Pj

0} representing the maximal cost of fetching it from 
nodes after node i. The possible maximum eviction loss 

Figure 3 The Cost of Node 2 under Different Object Placement 
Strategies in Example 1
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should be the product of its request rate and the difference 
between the cost of fetching it from the possible most 
“expensive” node and that from local cache. And the 
possible most “expensive” node is chosen as follows. If 
some of the first i-1 nodes have already committed to host 
object k (i.e., k ∈	∪j<i Pj

1), the possible most “expensive” 
node would be the “cheapest” node that commits to hold it. 
Otherwise if object k is cached at some nodes after node i 
(i.e., k ∉	∪j<i Pj

1, k ∈	∪j>i Pj
0), the possible most “expensive” 

node would be the most “expensive” node (after node i) 
that caches object k as these nodes after node i may evict 
object k, but it can guarantee that at least one copy would 
be kept in the NSCC group as proved in proposition 1. 
Otherwise, the possible most “expensive” node is indeed 
the original source. 

Definition 5: (Possible Minimum Insertion Gain) 
For an object k ∉	Pi

0, at iteration 1, node i computes the 
possible maximum insert gain of object k based on P-i

(l, i-1)  
as follows: 

  (6)

where dik
(i-1,min) = min{di, j | j < i, k ∈ Pj

1} representing the 
minimal cost of fetching it from those that have committed 
to cache it, and dik

(i+1,min) = min{di, j | j > i} denoting the 
minimal cost of fetching it from those (after node i) that 
have the potential to cache it. The possible minimum 
insertion gain should be the product of its request rate 
and the difference between the cost of fetching it from the 
possible “cheapest” node and that from local cache. The 
possible “cheapest” node is chosen among those that have 
committed to cache it and those that have the potential to 
cache it. And for nodes after node i, any may choose to 
cache object k.

Definition 6: (Conservative Response) For the one 
round game starting from the object placement under GL, 
a node would replace an object in its cache if and only if 
the minimum possible insertion gain of the inserted object 
is larger than the maximum possible eviction loss of the 
replaced one. 

Proposition 4. If each node gives conservative 
response and the NSCC game plays one round, each node 
is rational in the resulting object placement.

Proof. The proposition is proved by the definition of 
conservative response since the conservative responses 
guarantee that at each node, each replacement results in 
cost reduction anyway.

4.3 Potential Gain of a Node by Playing Again 
The potential gain of a node by playing again is defined 

as the cost reduction of the node if it plays again after a few 

rounds of IBR and it serves as the incentive for the node to 
play again. 

A node may choose to play again if some of its local 
cached objects are cached in certain subsequent nodes to 
which the access “prices” from this node are “cheap” and 
thus the node would benefit by evicting such objects; or if 
some objects just evicted by this node are also evicted in 
certain subsequent nodes to which the access “prices” from 
this node are “cheap” and thus the node would benefit by 
reinserting such objects. 

Meanwhile, the aforementioned two cases also serve 
as the reasons that some node(s) may lose after playing 
again as even though the node(s) makes the right placement 
decision(s) based on the current residual object placement, 
the actions (eviction and insertion) of subsequent nodes 
may cause the decisions made by these nodes playing first 
to be unreasonable. 

In the performance evaluation section, with numerical 
examples, we show that only a few nodes benefit from 
playing again after the first round and the gains are small 
as compared to their costs. That said, nodes have little 
incentive to play again after the first round. 

4.4 Complexity Analysis 
In NSCC, each participant takes part in the decision-

making process, which convinces these selfish nodes. We 
analyze the corresponding time and space complexity of the 
NSCC game in this section. 

Firstly, each node has to determine its initial object 
placement by sorting the request rates of objects which 
takes time O(mlgm). This specific decision making at a 
node does not rely on anything at other nodes and thus 
these nodes can make the decisions in parallel. 

Then in each round of IBR, any node i should compute 
the insertion gain for each object and sort these gains in 
descending order, which takes time O(m+mlgm) altogether. 
And then if the local object placement is changed, the node 
should announce the changes to other nodes. If in NDN 
where multicast is naturally supported, it may be enough 
that the node just sends the determined object placement 
once which takes time O(Si); otherwise if in IP networking, 
the node may have to send its determined object placement 
to any other participants which takes time O((n-1)Si). So 
in each round, the time that node i takes is bounded by 
O(m+mlgm)+(n-1)Si) = O(nm+mlgm). As nodes play the 
game one by one, these nodes take time O(n(nm+mlgm)) = 
O(n2m+nmlgm) altogether. And thus the time complexity 
would be O((mlgm+N(n2m+nmlgm)) where N is the 
number of IBR rounds that the NSCC game plays. In all 
our numerical examples, the algorithm stops after at most 
nine rounds, and as discussed in Subsection 4.3, these 
selfish nodes have little incentive to play again after the 
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first round, so the NSCC game may practically take time 
O(mlgm+n2m+nmlgm).

The space consumption at any node i is comprised 
of three components: the storages of the access “prices” 
di,js from this node to other nodes in the group, the global 
object placement P, and the insertion gain values of objects 
gik(P-i)s, which take space n-1, Σ i = 1

n Si and m separately. 
And therefore the required memory space at each node is 
bounded by O(n-1+nm+m). 

5 Performance Evaluation

In this section, we study how NSCC improves access 
costs of selfish nodes in an NSCC group with numerical 
examples. We are interested in analyzing cases where 
these selfish nodes have similar access patterns (object 
preferences) so that they can mutually benefit by implicit 
cooperation. Many measurement studies have observed 
heavy-tailed or Zipf distributions (i.e., the ith popular object 
has a request probability proportional to 1/is where s is the 
Zipf preference) in request popularities (e.g., [21-22]). Our 
popularity statistics of web request traffic collected from 
the edge of JiangSu Education and Research NETwork 
(JSERNET) on March 27, 2012 as illustrated in Figure 5 
and Fayazbakhsh et al.’s statistics of request logs collected 
from three CDN vantage points [23] reconfirm such heavy-
tailed behavior in recent workloads. So we assume the 
access pattern at any node i follows Zipf distribution with 
exponent s in our simulations. Without loss of generality, 
we assume all caches have the same cache capacity in terms 
of the number of unit-sized objects for all our simulations. 

Figure 5 Request Popularity Distribution of Web Requests from 
JSERNET

To be realistic, in Subsections 5.1 and 5.2, we conduct 
simulations on the PoP-level topology of AS 209 (58 PoP 
nodes and 108 links) from [24] (we treat PoP nodes in the 
underlying network as nodes with caching capability and 
they are competitive and selfish) and delays on links are 
treated as the access “prices” between PoP nodes. Figure 
6 shows the Cumulative Distribution Function (CDF) of 
access “prices” between PoP nodes and it can be seen that 

90% node pairs have access “prices” smaller than 50ms and 
99.8% node pairs have access “prices” smaller than 90ms. 
And we set the access “prices” from any node i = 1, 2, …, 
58 to original content sources, i.e., di,59, to be 130 ms for 
simulations conducted in this topology. 

Figure 6 The CDF of Access “Prices” between PoPs in AS 209

We compare the costs of nodes under NSCC against 
that under GL and against that under TSLS (under TSLS, ts 

is set to the average of the access “prices” for any caches to 
access data from other caches). To study the gain of playing 
again in NSCC, we show the costs after one round of IBR 
and that after multirounds. 

5.1 Impact of Access Patterns at Nodes
For the evaluation of the impact of access patterns, to 

draw more insightful conclusions, this work considers the 
following three cases of nodes’ access patterns [25]: 

 y Case 1: the access patterns at different nodes follow the 
same Zipf distribution with exponent s and the rank of 
objects remains the same for all nodes. 
 y Case 2: the rank of requested objects at different nodes 
remains the same, but the access patterns follow Zipf 
distribution with different exponents: they become more 
concentrated around the most popular objects as the node 
index i increases. 
 y Case 3: the access patterns at different nodes follow the 
same Zipf distribution but the ranking of a given object 
changes for different nodes (i.e., the objects at a specific 
ranking at nodes differ).

In the three cases, we set that there are 1,000 unit-sized 
objects that may be requested by these nodes and each node 
is with a caching capacity of 10 objects. And the result for 
each specific simulation is averaged over 500 runs, where 
at each run a random permutation of the order of play is 
selected. 
5.1.1 Case 1

We conduct simulations with different Zipf exponents s 
from 0.6 to 1.5 [21][26] and Figure 7(a) shows the average 
access cost over all nodes under different placement 
strategies. It can be seen that, in different scenarios, TSLS 
and NSCC both reduce the average node access costs as 
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compared to that under GL (on average, by 39.91% and 
67.67% separately) and NSCC further reduces the average 
node access costs by on average, 27.76% from that under 
TSLS. Hence, compared to TSLS, NSCC is more suitable 
for enabling selfish nodes to cooperate in caching when the 
access “prices” of different nodes pairs are various and they 
have the same access patterns. And the reason should be 
that under TSLS, when a node makes placement decisions, 
it does not realize that some popular objects are stored at 
nodes from which too “expensive” to fetch data such that 
they should be locally cached. 

Moreover, as the Zipf exponent s increases, even 
though the caching capacity of the group does not change, 
the average node access costs under different placement 
strategies are all reduced and the rates of average node 
access cost reduction decrease. This is because the access 
patterns become heavier-tailed with the increase of the Zipf 
exponent s such that the frequencies at which these nodes 
access the objects that are not cached in the group reduce, 
and the reduction of the frequencies becomes smaller and 
smaller. 
5.1.2 Case 2

The request rates over the objects k = 1, 2, …, m at 
different nodes are drawn from Zipf distributions with 
different exponents s (within the range of [0.6, 1.0]). More 
particularly, we set that node 1 has access pattern following 
Zipf distribution with exponent s = 0.6. Then, for node i = 2, 
3, …, n, s is increased by p(i-1) and p = (1.0 – 0.6) / (n-1). 
The results of average access cost of each node (over 500 
runs) are illustrated in Figure 7(b). As shown, the node 
access costs under TSLS and under NSCC are reduced 
as compared to that under GL (on average, by 41.72% 
and 64.35%) and NSCC outperforms TSLS. And as node 
index increases, i.e., as Zipf preference s increases, the 
node access costs primarily present a trend of decreasing 
since nodes’ access patterns become heavier and heavier-
tailed. However, at nodes 23, 26, 30 and 58, in the lines of 
TSLS and NSCC, spikes are seen. We dig into the topology 
data and find out that the average access “prices” to other 
nodes from the four nodes 58, 23, 26, 30 are the four most 
“expensive” which are higher than others by multiple times 
(up to 2.5 to 6 times). That said, the high access “prices” 
from the four nodes to others contribute to their large costs. 
5.1.3 Case 3 

The access patterns at all nodes follow Zipf distribution 
with a typical exponent s = 0.73 (see e.g., [21][26]). In 
order to establish dissimilarity in the nodes’ interests, the 
rank of objects at node 1 is assigned [1, 2, …, m] (m = 1,000) 
and this rank is shifted to the left by different positions for 
each of the other nodes. In general, the rank of objects at 
node i, i = 2, …, n (n = 58) is shifted by k(i-1) positions, 
where k is the shift parameter. For example, when k = 1, the 

ranking of objects at node 2 is [2, 3, …, m, 1], that at node 
3 is [3, 4, …, m, 1, 2], and so on. We consider different 
values of the shift parameter k (k(n-1) < m, then k = 1, 2, …, 
17) and the average node access costs under different shift 
parameters are shown in Figure 7(c).

It can be seen that the average node access costs under 
TSLS and under NSCC are reduced as compared to that 
under GL (on average, by 51.59% and 56.31% separately). 
Under NSCC, as the shift parameter k increases, when 
k ≤ 10, the average node access cost hardly changes, but 
when k > 10, it tends to increase. The reason is that as the 
dissimilarity in the nodes’ interest increases to a certain 
degree, nodes tend to cache their own most popular objects 
and less and less popular objects can be shared between 
nodes such that nodes have to access less popular objects 
from original content sources. This demonstrates that 
NSCC performs better when nodes’ access patterns are 
more similar. Another interesting observation is that as the 

(a)

(b)

(c)

Figure 7 Average Node Access Costs under Different Placement 
Strategies and with Different Access Patterns
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dissimilarity in the nodes’ interest increases, the average 
node access cost under TSLS gradually approaches that 
under NSCC and later they overlap. This is because as the 
dissimilarity in the nodes’ interests increases, less and less 
popular objects can be shared between them and the access 
patterns play the decisive role in the object placement 
decision processes at these nodes under NSCC obscuring 
the impact of TSLS’s unawareness of large distances 
between some nodes. 

5.2 Impact of Cache Capacity
In this subsection, we continue to conduct simulations 

on the PoP level topology of AS 209. Likewise, we assume 
there are 1,000 unit-sized objects that may be requested, 
the access patterns at different nodes follow the same 
Zipf distribution with exponent s = 0.73 and the rank of 
requested objects remains the same for all the nodes. In 
different simulations, the cache sizes vary from a capacity 
of 20 objects to that of 100 objects. The average node 
access costs in different simulations are illustrated in Figure 
8 and the result for each simulation is averaged over 500 
runs, where at each run a random permutation of the order 
of play is selected. 

 

Figure 8 Average Node Access Costs under Different Placement 
Strategies and with Different Cache Sizes

As shown, in each simulation, NSCC performs best 
among the three placement strategies and reduces the 
average node access cost (on average) by 88.18% as 
compared to under GL, a significant gain that attracts nodes 
to join NSCC group (TSLS accordingly reduces the average 
node access cost on average by 70.46% as compared 
to under GL). And as the cache sizes of nodes increase, 
the average node access costs under different placement 
strategies are all reduced and the rates of reduction decrease 
since while more objects can be cached in the group, these 
additionally cached objects are accessed by nodes with 
smaller and smaller frequencies. Moreover, under NSCC, 
when cache sizes of nodes are larger than 30 (the caching 
capacity of the NSCC group is 30 × 58 = 1,740 > 1,000 
objects), the average node access costs are not reduced 
any more as all requested objects are already cached in 

the group and more storage space would not make much 
difference. 

5.3 Impact of the Order Of Play
In this subsection, we study the impact of the order of 

play on individual node access costs. The studied NSCC 
group is comprised of five selfish nodes and their topology 
and access “prices” between each other (we choose 
“cheapest” path between two nodes) are shown in Figure 
9 (note that ∀i = 1, 2, …, 5, di,6 = 100). We set there are 50 
objects in the system and the caching capacity of each node 
is 10 objects. And we assume the access patterns at all the 
nodes follow the same Zipf distribution with exponent s = 
0.73 and the rank of these objects remains the same at all 
five nodes. 

 

Figure 9 The Topology of an NSCC Group Comprised of Five 
Selfish Nodes

The access costs of individual nodes under different 
placement strategies and with three different node orderings 
are evaluated (under TSLS, ts is set to the average access 
“prices” of all node pairs) and are illustrated in Figure 10. 
For each node i, we compute its average access “price” 
from other nodes like this avg_Di = 1

N - 1 d(i, j). The 
studied three node orderings are (a) random order, (b) the 
node with Least average access “Price” play First (LPF), 
and (c) the node with Most average access “Price” play 
First (MPF) (note that the ordering is the same at each 
round of NSCC). 

In the three orderings,  both TSLS and NSCC 
outperform GL policy, producing smaller access costs at 
individual nodes (on average, the individual node access 
costs are reduced by 35.77% and 47.32% separately) such 
that participation constraints are satisfied; and NSCC 
still outperforms TSLS. It can be computed that after 
multirounds, the average access costs of these nodes with 
random order, LPF and MPF are 26.21, 25.31 and 27.12 
cost units respectively; the maximum access costs among 
these five nodes with random order, LPF and MPF are 
27.98, 27.07 and 29.15 separately; and the variance of 
individual node access costs with random order, LPF and 
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MPF are 6.31, 5.72 and 19.23 respectively. The above 
statistics suggest that among the three orderings, with the 
LPF ordering, the NSCC game performs the best since 
nodes tend to serve its requests with least access costs and 
the node with the maximum cost (i.e., with least incentive 
to cooperate) is the happiest among the three orderings, i.e., 
nodes are treated in the fairest way with LPF ordering in 
this simulation. The reason is that under the LPF ordering, 
the NSCC game results in that objects with high request 
rates are cached at nodes which pay higher average access 
“prices” such that the access cost of such nodes would be 
reduced; meanwhile, the subsequent popular objects are 
cached at nodes starting from the one with the least average 
access “price” to the one with the largest average access 
“price” such that these subsequent popular objects can be 

accessed by nodes with “cheaper price.” In contrast, with 
the MPF ordering, the most popular objects are stored 
at the node with the least average access “price” and the 
subsequent popular objects are cached at nodes starting 
from the one with the largest average access “price” to the 
one with the least average access “price.”

Another interesting observation shown in Figures 7, 8 
and 10 is that the gains of playing again are negligible as 
compared to the access costs after the first round; and in 
Figure 10, by playing again, the individual access costs of 
some nodes are reduced, but at the expense of others. The 
potential gain of each node by playing again with different 
orderings under NSCC strategy in Figure 10 is shown in 
Table 1. With the three orderings, only nodes playing first 
benefit by playing again (Nodes 4, 2 and 3 respectively) 
at the expense of others. It can be seen that the gains by 
playing again are small as compared to the cost values and 
thus nodes have little incentive to play again (the gains 
by playing again may not even cancel out the cooperation 
overhead in playing again).

Table 1 Potential Gain of Each Node by Playing Again after the 
1st Round

Node 1 2 3 4 5
LPF 0 0 0 0.67 0
MPF 0 0.73 0 0 0
random order 0 0 0.25 0 0

6 Conclusion & Future Work

This work proposes a scheme that enables selfish nodes 
to cooperate in caching, here dubbed Not So Cooperative 
Caching (NSCC). We consider a network comprised 
of selfish nodes; each is with caching capability and an 
objective of reducing its own access cost by fetching data 
from local cache or from other caches. The challenge is 
to determine what objects to cache at each node so as to 
induce low individual node access costs, and the realistic 
access “price” model which allows various access “prices” 
of different node pairs further complicates the decision 
making process. 

Using a game-theoretic approach -- Iterative Best 
Response (IBR), and taking the various access “prices” 
into account, NSCC seeks a global object placement in 
which the access costs of individual selfish nodes would be 
reduced as compared to that if they operate in isolation so 
as to incur implicit cooperation even among these selfish 
nodes. In the distributed algorithm IBR, each node makes 
its own placement decisions based on its local access 
pattern, the object placements at other nodes and the access 
“prices” from this node to other nodes. We analyze the 

(a) Random Order

(b) LPF Order

(c) MPF Order

Figure 10 Individual Node Access Costs under Different 
Placement Strategies and with Different Node 
Orderings
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performance of NSCC both in theory and with extensive 
numerical examples. Although individual node rationality 
(i.e., not loosing by participation) is not guaranteed, NSCC 
achieves such rationality easier relative to other placement 
strategies. Furthermore, if each node gives conservative 
response in IBR method, individual node rationality can be 
improved. Our extensive experiments show that in almost 
every case, NSCC reduces individual node access costs as 
compared to the greedy local or previous work (TSLS) that 
ignores the difference in access “prices.” NSCC performs 
better when nodes follow more similar access patterns and 
is more efficient when users’ access patterns are less heavy-
tailed. Finally, NSCC allows for a fairer treatment of nodes 
according to their average access “prices” to other nodes. 

Our next step is to further extend our work to the cases 
that allow nodes in the group fail with some probability, 
which is common in the network environment and thus is 
further anchored in reality, and to show how the scheme 
can be implemented in Information Centric Networking 
such as Named Data Networking featuring routing by 
name, multipath routing and in-network caching despite 
node failure and node cheating.
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