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Abstract. Counting Bloom Filter is an efficient multi-hash algorithm based on 
Bloom Filter. It uses a space-efficient randomized data structure to represent a 
set with certain allowable errors, and allows membership and multiplicity que-
ries over the set. Aiming at the set whose items frequencies following heavy-
tailed distribution, this paper presents a novel algorithm called Multi-
Granularities Counting Bloom Filter (MGCBF) based on Counting Bloom Fil-
ter. This algorithm applies hierarchical data structures through several counting 
bloom filters to store the items frequencies information in the set. The time and 
space complexities analysis of this algorithm illustrates that it can reduce the 
space needed dramatically with the cost of little additional compute-time. And 
the following experiments indicate this algorithm is more efficient than other 
algorithms with same errors probability when the items frequencies of the tar-
get set follow heavy-tailed distribution. 

1   Introduction 

With the pervasion of the computer and also the network, it becomes more and more 
serious to deal with the expanding data. Extracting useful information from very huge 
dataset efficiently is one of most important research points. Bloom Filter is a space-
efficient multi-hash algorithm created by B. Bloom in 1970’s[1], and it is widely used 
in database and network applications [2]. But using original Bloom Filter to satisfy 
the needs of all kinds applications is becoming impossible because of the protean 
usages and quarries of data. Several algorithms based on original Bloom Filter come 
forth to fit the special needs of different applications [3][4][5]. 

In a good few of applications, some information of dataset need measuring is pro-
vided in advance (i.e. the size and the distribution). It can improve the performances 
of data disposal dramatically by taking advantage of those foregone information. 
Heavy-tailed distributions (also known as power-law distributions) have been ob-
served in many natural phenomena including both physical and sociological phenom-
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ena, for example, the size distribution of files transferring in network [6], the length 
distribution of flows intercepted in some router for a period [7], et. al. Heavy-tailed 
distribution means the most items frequencies are very small, while a very few items 
frequencies is so large that the total number of their tuples takes a large proportion of 
all tuples in the set. If the asymptotic shape of the distribution is hyperbolic, it is 
heavy-tailed regardless of the distribution for small values of the random variable. 

For the dataset whose items frequencies following heavy-tailed distribution, this 
paper represents a novel algorithm based on Bloom Filter, called Multi-Granularities 
Counting Bloom Filter (MGCBF), allowing membership and multiplicity queries for 
individual items with quite few errors. Because the MGCBF takes advantage of the 
characteristic of heavy-tailed distribution given by the dataset, it can reduce the stor-
age space (vs. CBF [3]) and calculating time (vs. SBF[4]), and improve the statistical 
precision (vs. SCBF [5]). This algorithm can be used in all kinds of dataset whose 
individual items frequencies following heavy-tailed distribution. 

2  Previous works 

Bloom Filter are space efficient data structures whose size is m, allowing for mem-
bership queries over a given set S={s1,s2,…,sn}. The Bloom Filter uses k hash func-
tions, h1, h2,…, hk to hash elements into an array V of size m. Initially, all positions of 
the array V are set to 0. For each element s, the bits at positions h1(s), hz(s), ..,,hk(s) in 
the array are set to 1. Given an item q, its membership in the dataset can be checked 
by querying the bits at positions h1(q), hz(q), ..,,hk(q). If and only if all those bits are 
set to 1, it is reported that q∈S. This algorithm can cause false positive error for it 
may be possible that not all bits at the positions h1(q), hz(q), ..,,hk(q) are set by the 
item q. But no false negative error can be produced. 

Counting Bloom Filter (CBF) is one of Bloom Filter’s extensions. And it is intro-
duced by L.Fan, P. Cao et. al. in [3]. This algorithm changes the bits in the array to 
counters, allowing estimates of the multiplicities of individual keys with a small error 
probability. When an element s want to insert, the counters at positions h1(s), 
hz(s), ..,,hk(s) in the array add 1, And it means that CBF not only supports items 
insertions and queries like original Bloom Filter, but also can be used for items dele-
tions. When an element sj want to be eliminated from the set, the counters at corre-
sponding positions in the array subtract 1 if all these counters’ values are bigger than 
or equal 1. Otherwise it is reported that sj∉S. The CBF inherits false positive errors 
from Bloom Filter, and also false negative errors are introduced if the counters space 
is not large enough. The method of counters space estimation is illustrated in [3], and 
the errors probability is also given. 

S.Cohen and Y.Matias indicate Spectral Bloom Filter (SBF) in [4], which is an-
other extension of original Bloom Filter. This algorithm is based on CBF, which uses 
a compact data structure to represent the counters array and a optimal method called 
recurring minimum to reduce the errors probability. But the maintenance of this com-
pact data structure needs additional calculating time. And so the items frequencies 
distribution of the dataset can influence the time of data structure maintenance. To the 
dataset with same tuples number, the asymmetrical distribution of items frequencies 



need more compute time than symmetrical ones. When the frequencies follow heavy-
tailed distribution, this situation is more deteriorated. The SBF does not give any 
optimizations for this situation for it does not fit the needs of those type datasets. 

Space Code Bloom Filter (SCBF) is an algorithm for network flow length statistics 
proposed by S. Cohen and Y Matias in [5]. This algorithm can be used in other appli-
cations for the same requirements. The SCBF employs several Bloom Filters to esti-
mate the packets number of individual flows. To make the data structure more effi-
ciency, this algorithm is extended to a new algorithm called Multi-Resolution SCBF, 
applying sampling and multiplies resolution layers methods to express the flows 
whose packets number1 exceed some thresholds. The maximum likelihood estimation 
(MLE) and mean value estimation (MVE) methods are adopted to gauge all flows 
length information. Because of the real time requirement of network flow disposal, 
this algorithm uses the method of sampling. And this method cannot measure the 
items frequencies and their distribution accurately. It cannot satisfy the precise meas-
urement needs of some special applications. 

3 The Multi-Granularities Counting Bloom Filter 

The MGCBF employs a serial of CBFs (MGCBF={cbf0,cbf1, …, cbfh-1}), which use a 
set of different counter granularities (C={1,c1,c2, …, ch-1}) to count the frequency of 
individual items in the dataset. The time and space complexity are main problem 
wanted to solve because of the long length of the sequence [2][3][4][5]. This algo-
rithm supports related items insertions, queries and deletions, for frequencies statisti-
cal dataset whose frequencies following heavy-tailed distribution. The prototype of 
this algorithm is introduced as following: 
(1) When an item x wanted to add into MGCBF, the counters at positions h1

0(x), 
h2

0(x), …, hk0
0(x) in the array V0 add 1. (V0 is the array structure of MGCBF’s 

first CBF, cbf0. h1
0, h2

0, …, hk0
0 are the hash functions in cbf0. Without the loss of 

generality, we suppose h1
0(x)≤h2

0(x)≤…≤hk0
0(x) ); 

(2) The second step is checking the value h1
0(x). If h1

0(x)=c1, the counters at posi-
tions h1

0(x), h2
0(x), …, hk0

0(x) decrease c1, then the values in those counters are 
changed to 0, h2

0(x)-c1, …, hk0
0(x)-c1; At the same time, the counters add 1 at po-

sitions h1
1(x),h2

1(x), …, hk1
1(x) in V1 which is the array of cbf1, that means 

h1
1(x)+1, h2

1(x)+1, …, hk1
1(x)+1; 

(3) And then checking the value h1
1(x). If h1

1(x)=c2, we operate the same action as 2) 
in cbf1 and cbf2.. This action keeps doing until cbfh-1 is checked. When an item x 
multiplicity query is need, we need get a minimum values in every layer CBF 
which make up of a set: M(x)={min0(x),min1(x), …, minh-1(x)}, and then the fre-
quency of x in S is reported as following: 
Counter(x) = min0(x)+min1(x)*c1+ …+ minh-1(x)* ci                      (1) 1
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Fig.1.  The MGCBF data structure 

The MGCBF use different layers to statistic the items frequencies in the target 
dataset. The low frequent items only exist in low layers, while only very high fre-
quent items can exhibit at every layer. When the items frequencies follow heavy-
tailed distribution in the dataset, the arrays space reduces in power law as the layers 
increasing because only very small items are with very high frequencies. Because the 
counters in low layer CBFs’ data structures should only maintain very small and 
controllable values, their space needed can reduce dramatically as the CBF. And 
multiply granularities makes counters values of every layer relative small, which can 
restrict the space needed in a small range. And so the storage resources needed in the 
MGCBF is relative smaller than those of the CBF, but this method will introduce 
additional time used for data structure maintenance and also the errors probability. 
Because the influences of errors caused by high-level CBFs are more important than 
those of low-level CBFs, the MGCBF applies an optimal method called recurring 
minimum introduced in [4] in high-level CBFs (cbf1 and above) to reduce the errors 
probability dramatically by with the cost of a small storage resources and compute 
time. We will analyze the storage resources usages, calculating complexities and 
errors ratios in the following section. 

 
insert (MGCBF,X) 

Initiate(MGCBF);  //set every counter of each granularity CBF to zero; 
for i:=1 to N, do  

cbf0.add(xi, 1);   //add the xi into the granularity 0 CBF 
for j:=1 to h, do  

if(minj-1(xi)= =cj)  
cbfj-1.remove(xi, cj); 
if cbfj.isminimum  

s_cbfj.add(xi, 1); 
else  

cbfj.add(xi, 1);  
return count(xi):= min0(xi)+min1(xi)*(c1 +)+ …+ minh-1(xi)* ck; 1
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end_inserted  

Fig.2.  Insertion algorithm in MGCBF 



The pseudo-code of insertion items action in the MGCBF is illustrated in Fig.2. 
The parameters used in that can be described as following: x1,…,xN: the incoming 
packets sequence;cbf0, …, cbfh-1: the CBFs which construct the MGCBF, h is number 
of stages; s_cbf1, …, s_cbfh-1: the second CBFs used in high-level of the MGCBF; 
C={c0,c1,c2, …, ch-1}: the space of counting unit in every level; 
M(xi)={min0(xi),min1(xi), …, minh-1(xi)}: the serial made up of minimum count of 
the items xi in every stage; Count(xi): the tuples number of xi in the MGCBF. 

4 Performances and errors analysis 

Because the Pareto distribution is one of widely used heavy-tailed distributions, this 
paper employs a set whose items frequencies following a Pareto distribution to ana-
lyze the performances and errors probability. And this paper also compares these 
characteristics with those of the other two algorithms (CBF and SBF). Firstly, we 
suppose the items frequencies of the target dataset S following a Pareto distribution 
whose cumulative distribution function is , and the individual 
items number in S is set to n. Using the properties of the Pareto distribution [8], we 
can get the expectation 

]1[/11)( >−= ααxxF

]1)[1/()( >−= αααxE . And so we can infer the tuples num-
ber in S is about ]1)[1/()( >−=× αααnxEn . 

4.1 Performances analysis 

In this section, we will analyze the performances in three different directions: the 
space complexity, the compute complexity and the error probability. 

4.1.1 Space complexity analysis 
When we suppose the most frequent item have P tuples in S, Equation (2) should be guaran-
teed if using the MGCBF:  
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And then the counters number ni in the array of cbfi can be estimated as the below 
equation in the MGCBF data structure according to properties of the Patero distribu-
tion: 
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Because we apply recurring minimum method to reduce the errors probabilities in 
high-level of the MGCBF, the space needed in level 2 and above is double of the 
original structure. With the supposition of m/n=θ, the total space needed in level i can 
be inferred by the above equation which we call mi: 
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From this equation, we can calculate the all storage resource needed by the 
MGCBF to dispose the S: 
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4.1.2 Compute complexity analysis 
Firstly, we on the assumption that the mean time of one tuple’s insertion, query or 

deletion in individual layers of the MGCBF is following: T0,T1,…,Th-1. According to 
the cumulated distribution function (CDF) of the Pareto distribution, we can calculate 
the ratio of items exist in cbfi : 
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the mean compute time of every item: 
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And then we can calculate the mean compute time of one tuple at following: 
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4.1.3 Errors probability analysis 
The errors caused by the MGCBF can be divided into two parts: (1) the inherent 
errors exist in the CBFs; (2) the errors caused by count numbers transferring in the 
layers. 

About the errors of the Bloom Filter, B.Bloom analyzed it in detail when he intro-
duced this algorithm [1]. When all n items of the target set S are inserted into the 
array V whose size is m, the error probability is . And then we can 

calculate the minimal value: k=ln2*m/n, that means . This 
error ratio can be controlled by modifying the values of k and n through estimating 
the value m : 

kmkneE )1( /−−=
nmk /)6185.0()2/1( =

θ=m/n=6  k=4  E=0.0561  θ=m/n=8  k=6  E=0.0215 
θ=m/n=12  k=8  E=0.00314   θ=m/n=16  k=11  E=0.000458. 

The detail analysis about CBF errors probability in [4][5] indicated that the inher-
ent errors of the CBF are equivalent with the original Bloom Filter. The experiments 
of [4] illustrated that the error probability can be reduce to 1/18 if using the method of 
recurring minimum. And so the inherent errors probability can be controlled in a very 
small region in the high-level of the MGCBF. 



The transferring of count numbers in levels of the MGCBF makes it important to 
reduce the error probability caused by this method. We can suppose the inherent 
errors in cbf0, cbf1, …, cbfh-1 are E0, E1, …, Eh-1. And the total errors in cbfi  can be 
regard as the iterative of its lower levels, it can be express as Equation (5) : 

)1()1)(1(1 1101 −− −−−−=′ ii EEEE L                                           (5) 
And we can get the actual errors of every CBF of the MGCBF: 

(E0’, E1’, …., Eh-1’) = (E0, 1(1-E0)(1-E1), …, 1-(1-E0)(1-E1)…(1-Eh-1)) 
From the equation above, we can conclude that the errors probabilities of items fre-
quencies estimations increase as the CBF levels increasing in the MGCBF. But the 
errors probabilities of high-level are controlled in a very small region, and so the 
errors probabilities of high frequent items does not increase remarkably.  

4.2 Comparison with other algorithms 

The MGCBF is designed for the dataset whose items frequencies follow heavy-tailed 
distribution, and it can compactly use storage and compute resources. While the tradi-
tional algorithms do not use the known information, it can induce costs of statistical 
information maintenance. In this section, the MGCBF will be compared with the 
other widely used two algorithms: the CBF and the SBF in performances and errors 
probabilities. Because the SCBF uses sampling and MLE estimations, the application 
scope and statistical errors are absolutely different with the MGCBF, and so it is not 
considered when we operate the comparison. 

Using the CBF, the space needed is about PnPm 22 loglog ⋅⋅= θ  for the cor-
rectness assurance [3][4]. And the SBF initializes the data structure with very little 
space, and adjusts the space of data structure to satisfy the needs in real time [4]. The 
SBF use the storage spaces more efficiently with the cost of compute time for main-
taining the data structure. 

We set the parameters of the MGCBF as following: θ=m/n=12，k=8，P＝

65536、C1=C2=…=Ch=4、T1=T2=…=Th andα=3. And we also set the mean com-
pute time for reassigning storage resources to Ta in the SBF, and the ratio of the 
counters whose space should be assigned is β. 

According to the Equation (1), we can calculate the minimal value of h is hmin=8. 
And so we can get the storage resources used by these three algorithms as Equation 
(6) while the space complexity equation of the SBF is according to [4]. Because the 
SBF uses table indexes to maintain the storage data structure, it is the most space 
efficient algorithm of these three ones.  

 

(6)

The MGCBF uses a hierarchical data structure to maintain the items information, 
which means it needs more compute time than the CBF, while the SBF needs more 



time to reassigned space for incoming items (that is to say Ta>>T1). We compare the 
compute time of three algorithms in Equation (7). From these equations, we can 
indicate that compute time the MGCBF needs only a little more than that the CBF 
needed because of the heavy-tailed distribution of items frequencies in the target set. 
But  compute time of the SBF is much more rely on the parameters Ta  andβ. We can 
infer that the parameter )1,5.0[∈β , and so its compute time needed is far more 
than the others. 

 

(7)

We check the errors probability of the cbfi in the MGCBF, and compare it with 
those of the other two algorithms in Equation (8). The errors probabilities of these 
three algorithms are very small because all of them use more space and hash func-
tions to guarantee the precision. And it is verified the inference in § 4.1.3 that the 
errors probabilities may increase with the levels augment of the MGCBF but this 
increase is controlled in a small scope. If we want to make the algorithms more effi-
cient by reducing the storage resources and hash functions, it will introduce more 
errors for all  these algorithms. But the precision of the MGCBF will not reduce more 
rapid than the other twos.  

(8) 

5 Experiments 

This paper adopts five groups of datasets whose items frequencies following 
heavy-tailed distributions, and analyzes these datasets with three algorithms (the CBF, 
the SBF and the MGCBF) to compare and evaluate the performances and errors prob-
abilities of these algorithms. The datasets are the packets coming from Abilene-III 
TRACE[9] and TRACE of  the CERNET backbone. We apply the flow specification 
of 5-tuple to counting the flows by their lengths. Fig 3-a illustrates the distributions 
of five datasets: dif_num describes the individual items number in the datasets; mean 
indicates the mean value of individual items frequencies; P95 depicts the frequency 
of item in 95 percentile; and P99 depicts the frequency of item in 99 percentile; 
Max_val is used to characterize the tuples’ number of the maximal frequent item in 
the dataset. And so from the Fig. 3-a , we can conclude that the individual items fre-
quencies of all these five dataset follow heavy-tailed distribution though the items 
numbers of these datasets are far from the same ones. 

 



a. Comparison of data distributions b. Comparison of compute complexities 

 
c. Comparison of storage resource d. Comparison of error probabilities 

  

Fig.3.  Performances Comparison of the CBF，SBF，MGCBF using different 
datasets 

The data of the other figures of Fig.3 are normalized for the convenience of com-
parison. Fig.3-b describes comparison of three algorithms’ compute performance. 
The performance of the MGCBF is more efficient than the SBF, and near the CBF, 
The reason is that the SBF need more time for data structure maintenance, which is 
depicted in §4.1.3 in detail. The Fig.3-c indicates the MGCBF saves 60% storage 
resources comparing with the CBF. Though the SBF is more space efficient than the 
MGCBF, it needs more time for calculation. The error probability of the MGCBF is 
almost same with that of the CBF in the Fig. 3-d, which indicates that the recurring 
minimum method reduces the errors probabilities in the high-level CBFs dramatically. 
The errors probabilities of the SBF are smaller than those of the other ones, but it is 
not prefect as described in [4]. The reason may be that the experiments applied differ-
ent datasets and different hash functions. In generally, the experiments results verify 
the correctness of conclusion inferred in §4. 

6. Conclusion 

This paper introduces a novel algorithm to count the number and multiplicities of 
individual items in a set, which is called Multi-Granularities Counting Bloom Filter 
(MGCBF). This algorithm is based on the Bloom Filter, and takes advantage of the 
fact that the items frequencies follow heavy-tailed distribution in this target set. This 



algorithm is more space efficient that traditional Counting Bloom Filter (CBF) with 
little compute time and few errors probabilities. And comparing to the Spectral 
Bloom Filter (SBF), this algorithm is more compute efficient with the cost of addi-
tional storage resources. The MGCBF not only support insertions and queries of 
items, but also support the items deletions, just like the SBF. And so the expansibility 
of the MGCBF is comparative fine. Further more, the more information about the 
dataset we can get, the subtler the parameters of the MGCBF we can set, and also the 
more precise results we can receive. 
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