
Computer Networks 174 (2020) 107247 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

Building an efficient intrusion detection system based on feature selection 

and ensemble classifier 

Yuyang Zhou 

a , b , c , Guang Cheng 

a , b , c , ∗ , Shanqing Jiang 

a , d , Mian Dai a , b , c 

a School of Cyber Science and Engineering, Southeast University, Nanjing, China 
b Key Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing, China 
c Jiangsu Provincial Key Laboratory of Computer Network Technology, Southeast University, Nanjing, China 
d National Key Laboratory of Science and Technology on Information System Security, Beijing, China 

a r t i c l e i n f o 

Keywords: 

Cyber security 

Intrusion detection system 

Data mining 

Feature selection 

Ensemble classifier 

a b s t r a c t 

Intrusion detection system (IDS) is one of extensively used techniques in a network topology to safeguard the in- 

tegrity and availability of sensitive assets in the protected systems. Although many supervised and unsupervised 

learning approaches from the field of machine learning have been used to increase the efficacy of IDSs, it is still 

a problem for existing intrusion detection algorithms to achieve good performance. First, lots of redundant and 

irrelevant data in high-dimensional datasets interfere with the classification process of an IDS. Second, an indi- 

vidual classifier may not perform well in the detection of each type of attacks. Third, many models are built for 

stale datasets, making them less adaptable for novel attacks. Thus, we propose a new intrusion detection frame- 

work in this paper, and this framework is based on the feature selection and ensemble learning techniques. In the 

first step, a heuristic algorithm called CFS-BA is proposed for dimensionality reduction, which selects the optimal 

subset based on the correlation between features. Then, we introduce an ensemble approach that combines C4.5, 

Random Forest (RF), and Forest by Penalizing Attributes (Forest PA) algorithms. Finally, voting technique is used 

to combine the probability distributions of the base learners for attack recognition. The experimental results, us- 

ing NSL-KDD, AWID, and CIC-IDS2017 datasets, reveal that the proposed CFS-BA-Ensemble method is able to 

exhibit better performance than other related and state of the art approaches under several metrics. 
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. Introduction 

Nowadays, the applications of the Internet help society in many ar-

as such as electronic communication, teaching, commerce, and enter-

ainment, it has become a part of daily life of the people. However,

yber security has become vulnerable due to the massive expansion of

he computer networks and rapid emergence of the intrusion incidents.

he necessity of developing cyber security has attracted considerable at-

ention from industry and academia around the world. Despite the use

f different security applications, such as firewalls, malware prevention,

ata encryption, and user authentication, many organizations and enter-

rises fall victims to contemporary cyber-attacks [1] . In order to sneak

nto the system, attackers might deliberately exploit the vulnerabilities

f the target system and launch different types of attacks, which may

ead to the leakage of private information. 

As technology is rolling out, these attacks threaten the confidential-

ty, integrity, and availability of cyber systems all the time. Therefore,

t is necessary to introduce intrusion detection systems (IDSs) [2–5] to

rotect systems from a variety of attacks. To be more specific, IDSs are
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idely deployed in various distributed systems, perceiving the malicious

ntrusions and then taking rapid countermeasures to prevent further in-

ections and spread. In general, IDSs can be classified into two major

ategories based on detection mechanisms: anomaly and misuse detec-

ion [6] . In detail, anomaly detection is designed to detect malicious

ctions through identifying deviations from a normal profile behavior.

uch IDSs perform better at detecting novel types of attacks, however,

hey could not avoid a high false positive (FP) rate [7] . On the other

and, based on known patterns, misuse detection can effectively distin-

uish legitimate instances from the malicious ones [8] . Although this

ind of IDSs is reliable for detecting known attacks, it cannot identify

nknown attacks or variations of known ones. 

Unfortunately, as the attackers become more sophisticated, new

hreats and vulnerabilities emerge rapidly. On the one hand, the risk

or critical infrastructures to be compromised significantly increases

n short order. On the other hand, in order to detect and deal with

ovel attacks, a higher requirement for IDS has also been brought for-

ard. Hence, many approaches have been researched and developed

o improve the detection rate and performance of IDSs. One of them is
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e  
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a  
achine learning (ML) [9–11] , which can be applied for both anomaly

nd misuse detection models. By analyzing network traffic passing

hrough central network nodes, an IDS not only needs to distinguish

etween benign and malicious traffic, but also infers the specific class

f an attack occurring in the protected system. 

However, in most instances, only a fraction of the traffic may indi-

ate malicious behaviors while a network is flooded with normal traffic

ows, which leads to the difficulty of identifying attacks with high At-

ack Detection Rate (ADR) while keeping the False Alarm Rate (FAR)

ow. There was one problem with the initial idea of applying ML in IDS,

hat is, a single classifier may not be strong enough to build a good IDS.

hus, researchers have come up with the idea of constructing ensemble

lassifiers for IDSs [12,13] . In general, the main goal of ensemble learn-

ng is to combine a set of individual classifiers and then make a bet-

er classification decision about the object submitted at the input [14] .

or instance, training a single classifier on different subsets of an IDS

ataset could produce different classification performances, however,

n ensemble would average the output of multiple classifiers and there-

ore become a better option. 

Moreover, the numerous attack types and network traffic attributes

ose another challenge for ML as they expand the search space of the

roblem and lead to high computational and time complexity [15] . No-

ably, feature selection has been proven to be a good solution for an

DS, which detects highly relevant features and eliminates useless ones

ith a minimum degradation of performance [16,17] . There are three

ain models that deal with feature selection: wrapper, filter, and em-

edded approaches. Information gain ratio based feature selection is

ne of classical filter algorithms, where information gain ratio repre-

ents a ratio of information gain to the intrinsic information. Although

t solves the drawback of information gain and reduces a bias towards

ulti-valued attributes, however, it may be biased towards features with

ewer values in some instances. Different from information gain ratio,

orrelation-based feature selection maximizes the relevance between the

nput features and the output and minimizes the redundancy of the se-

ected features. This algorithm selects one feature at a time according to

ts strong correlation with outputs, which can be used to perform both

ttribute selection and tuple reduction flexibly. 

In this paper, we propose a novel intrusion detection system to de-

ect various types of attacks with high accuracy and efficiency. First, as

 regular means of dimensionality reduction and redundancy elimina-

ion, a nature-inspired feature selection algorithm is proposed to retrieve

 subset of the original features. Second, the imbalance between normal

nd malicious traffic has a negative effect on the accuracy of attack de-

ection. To overcome this problem, our solution then utilizes ensemble

lassifier to reduce the bias among different training datasets. In this

ay, feature selection and ensemble classifier are combined to improve

he stability and accuracy of the IDS with low computational and time

omplexity. Finally, an unbiased model can be generated to detect both

opular and rare intrusive events. The major contributions of our work

re summarized as follows: 

• We propose a novel methodology that combines the benefits of fea-

ture selection and ensemble classifier with the aim of providing ef-

ficient and accurate intrusion detection. 

• In the context of feature selection, we provide CFS-BA based ap-

proach, which is used to assess the correlation of the selected fea-

tures and beneficial for optimizing the efficiency of the training and

testing phase. 

• To increase the multi-class classification performance on unbalanced

datasets, we introduce an ensemble approach by combining deci-

sions from multiple classifiers (C4.5, RF, and Forest PA) into one by

utilizing a vote classifier based on the average of probabilities (AOP)

combination rule. 

• The proposal is compared with exsiting methods on an extensive

testbed comprising of three datasets, namely: NSL-KDD, AWID, and

CIC-IDS2017. Experimental results show that the proposed solution
surpasses equivalent methods in terms of Accuracy (Acc), F-Measure,

and ADR classification metrics, while keeping FAR at acceptable lev-

els. 

The rest of the paper is organized as follows. In Section 3.2 , we re-

iew the background information concerning IDSs. Then, the proposed

ethodology is given in Section 3 , while in Section 4 we provide the

valuation results through experiments and comparative analysis. Fi-

ally, the conclusion is presented in Section 5 . 

. Related work 

As a significant tool in computer based systems for ensuring cyber

ecurity, IDS constantly attracts the research community’s attention. Al-

hough plenty of solutions have been proposed to improve the perfor-

ance of IDS, in the context of this section, we only consider related

ork that falls under the ML based IDS, utilizes feature selection or en-

emble classifier, and especially focuses on hybrid approaches. 

.1. On feature selection techniques 

For purpose of reducing computational complexity, the technique of

eature selection [18,19] , that can be used as a pre-processing step in

L algorithms, aims to eliminate irrelevant features while preserving

r even enhancing the performance of the IDS. In order to obtain more

obust and effective classifier, Hota and Shrivas [16] proposed a model

hat used different feature selection techniques to remove irrelevant fea-

ures. The results indicate that C4.5 with information gain can achieve

he highest accuracy with only 17 features for the NSL-KDD dataset. In

ddition, Khammassi and Krichen [17] have applied as a search strat-

gy and logistic regression as a learning algorithm for network IDSs to

hoose the best subset. The results demonstrate that their method pro-

ides high detection rate with only 18 features for the KDDCup’99 and

0 features for the UNSW-NB15 dataset. Abdullah et al. [20] also pro-

osed a framework of IDS with selection of features within the NSL-KDD

ataset that are based on dividing the input dataset into different sub-

ets, and combining them using Information Gain (IG) filter. 

.2. On ensemble classifiers 

Moreover, ensemble methods are machine learning techniques that

ombine several base models in order to reduce false positive rates and

roduce more accurate solutions than a single model would. Gaikwad

nd Thool [21] proposed a bagging ensemble method using REPTree

s its base classifier, which takes less time to build the model and pro-

ides highest classification accuracy with lowest false positives on the

SL-KDD dataset. Jabbar et al. [22] proposed a cluster-based ensemble

lassifier for IDS, which is built with Alternating Decision Tree (ADTree)

nd k-Nearest Neighbor algorithm (kNN). The experimental results show

hat the proposed ensemble classifier outperforms other existing tech-

iques in terms of accuracy and detection rate. In order to create a

tronger learner, Paulauskas and Auskalnis [23] proposed an ensemble

odel of four different base classifiers: J48, C5.0, Naive Bayes, and Par-

ial Decision List (PART), which depends on the idea of combining mul-

iple weaker learners. Results prove that their ensemble model produces

ore accurate results for an IDS. In order to mitigate malicious events, in

articular botnet attacks in Internet of Things (IoT) networks, Moustafa

t al. [24] proposed new statistical flow features and developed an Ad-

Boost ensemble learning method to detect attacks effectively. 

.3. On hybrid approaches 

Recently, many hybrid approaches using both feature selection and

nsemble method have been produced to improve the performance of

DSs. Malik et al. [25] proposed a combination approach of Particle

warm Optimization (PSO) and Random Forest (RF). More appropri-

te features for each class help the proposed model produce a higher
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a  
ccuracy along with low false positive rate compared with other algo-

ithms. Pham et al. [14] built a hybrid model, which utilizes gain ra-

io technique as feature selection and bagging to combine tree-based

ase classifiers. Experimental results show that the best performance

as produced by the bagging model that used J48 as the base classi-

er and worked on 35-feature subset of the NSL-KDD dataset. Abdul-

ah et al. [20] also built an IDS using IG based feature selection and

nsemble learning algorithms. The experiment on NSL-KDD dataset in-

icates that the highest accuracy obtained when using RF and PART

s base classifiers under the product probability rule. In addition, Salo

t al. [13] proposed a hybrid IDS which combines the feature selec-

ion approaches of IG and Principal Component Analysis (PCA) with an

nsemble classifier based on Support Vector Machine (SVM), Instance-

ased learning algorithms (IBK), and Multi-Layer Perceptron (MLP). A

omparative analysis performed on several IDS datasets has proven that

G-PCA-Ensemble method exhibits better performance than the majority

f existing approaches. Due to large-scale data produced from a massive

etwork infrastructure, Khan et al. [26] proposed a scalable and hybrid

DS, which is based on Spark ML and Convolutional-LSTM (Conv-LSTM)

etwork to employ the anomaly and misuse detection separately. Zhong

t al. [27] also proposed a new anomaly detection model called HELAD,

hich is based on the Damped Incremental Statistics algorithm for fea-

ure selection and organic integration of multiple deep learning tech-

iques for classification. In [28] , a novel IDS based on hybrid feature

election and two-level classifier ensembles has been proposed, and ex-

erimental results show that it produces a significant improvement of

he detection rate on the NSL-KDD and UNSW-NB15 datasets. 

. Proposed methodology 

In order to increase the detection ability of IDS and prevent the ser-

ice providers from attack, we propose an efficient ML-based IDS using a

etaheuristic optimization algorithm based feature selection approach,

nd a vote classifier which is an ensemble of classifiers method. The

OP combination rule is integrated into the model for the decision step.

uring the experiments, 10-fold cross-validation (CV) approach is used

o validate the performance of the model and classify benign traffic and

arious types of attacks. 

Fig. 1 demonstrates the detection framework of the proposed ML-

ased IDS, which consists of the following four main phases: 

• Datasets preprocessing: The first phase is to transform raw data into a

format suitable for analysis by applying preprocessing to the original

datasets. 

• Dimensionality reduction: In order to overcome the problem of high-

dimensional datasets, the feature selection approach based on CFS-
Fig. 1. The framework of the proposed F
BA is used to reduce the dimensionality of the datesets and select

the most relevant features for each type of attacks. 

• Classifiers training: For purpose of improving the accuracy of the

IDS, we train three individual classifiers as base learners using C4.5,

RF, and Forest PA, and build an ensemble classifier based on them. 

• Attack recognition: The detection model is tested using a 10-fold

cross-validation approach, and voting technique is used to combine

the probability distributions of the base learners with the AOP com-

bination rule to make classification decisions. 

Finally, according to the results of the ensemble classifier, benign

raffic and various intrusive events can be detected and classified with

igh classification accuracy. Detailed information about the framework

s provided in Sections 3.1 and 3.2 . 

.1. Feature selection 

The aim of feature selection is to find a subset of the attributes from

he original set which are representative enough for the data, and the

ttributions in the subset are highly relevant to the prediction. Feature

election approaches can be mainly categorized into wrapper, filter, and

mbedded approaches [29] . While filter approaches assess the relevance

f the features from the dataset and the selection of the features is based

n the statistics, the classification performance is used in wrapper ap-

roaches as a part of the feature subsets evaluation and selection pro-

esses. In contrast to wrapper approaches, embedded approaches are

omputationally less intensive because they incorporate an interaction

etween feature selection and learning process. Although embedded ap-

roaches integrate a regularised risk function to optimize the features

esignating parameters and the predictor parameters [30] , it is not easy

o make a modification in the classification model to get higher perfor-

ance [31] . 

Modern intrusion detection datasets inevitably contain plenty of re-

undant and irrelevant attributes [32] , which lower the efficacy of data

ining algorithms and cause uninterpretable results [33] . Therefore, the

rst step in this study is to reduce the dimensionality and select the fea-

ure subset of the utilized dataset [13] . In this paper, a hybrid approach

y combining CFS with BA is proposed to optimize the efficiency of the

eature selection process and enhance the accuracy of the classification.

he main concept of this approach is to evaluate the relevance and the

edundancy of the selected feature subset which is searched in the given

earch space for the optimal solution. 

.1.1. Correlation-based feature selection (CFS) 

CFS [34] is one of classical filter algorithms that choose features

ccording to the result of the heuristic (correlation-based) assessment
eature selection-Ensemble model. 
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Algorithm 1 CFS-BA approach for feature selection. 

Require: Training Dataset and Testing Dataset 

Ensure: Selected Feature Subset 𝑋 𝑏𝑒𝑠𝑡 

1: Initialize a population of 𝑛 bats 𝑋 𝑖 = ( 𝑥 𝑖 1 , …𝑥 𝑖𝐷 ) 𝑇 ( 𝑖 = 1 , 2 , …, 𝑛 ) and 

𝑣 𝑖 
2: Initialize frequency 𝑓 𝑖 , pulse emission rate 𝑟 𝑡 

𝑖 
, and loudness 𝐴 

𝑡 
𝑖 

3: Initialize 𝑓𝑖𝑡 ( 𝑋 𝑖 ) (cf. Eq. 1) and 𝑋 𝑏𝑒𝑠𝑡 

4: Initialize 𝑓𝑖𝑡 𝑡𝑒𝑚𝑝 ( 𝑖 ) and 𝑋 𝑡𝑒𝑚𝑝 ( 𝑖 ) for solution storage 

5: while 1 ⩽ 𝑡 ⩽ Max no. of iterations do 

6: for 𝑖 = 1 to 𝑛 do 

7: Generate new 𝑓 𝑖 (cf. Eq. 2) 

8: Update 𝑋 𝑖 and 𝑣 𝑖 (cf. Eq. 3 and Eq. 4) 

9: if 𝑟 𝑡 
𝑖 
< rand(0,1) then 

10: Select a 𝑋 𝑖 from 𝑋 𝑏𝑒𝑠𝑡 

11: Generate a new 𝑋 𝑛𝑒𝑤 (cf. Eq. 5) 

12: end if

13: Calculate 𝑓𝑖𝑡 ( 𝑋 𝑛𝑒𝑤 ) (cf. Eq. 1) 

14: if 𝑓𝑖𝑡 ( 𝑋 𝑖 ) ⩽ 𝑓𝑖𝑡 ( 𝑋 𝑛𝑒𝑤 ) and N(0,1) < 𝐴 

𝑡 
𝑖 

then 

15: 𝑓𝑖𝑡 𝑡𝑒𝑚𝑝 ( 𝑖 ) ← 𝑓𝑖𝑡 ( 𝑋 𝑛𝑒𝑤 ) 
16: 𝑋 𝑡𝑒𝑚𝑝 ( 𝑖 ) ← 𝑋 𝑛𝑒𝑤 

17: Decrease 𝐴 

𝑡 
𝑖 

and Increase 𝑟 𝑡 
𝑖 

(cf. Eq. 6 and Eq. 7) 

18: end if

19: if 𝑓𝑖𝑡 ( 𝑋 𝑛𝑒𝑤 ) ≥ Max of 𝑓𝑖𝑡 𝑡𝑒𝑚𝑝 then 

20: 𝑋 𝑏𝑒𝑠𝑡 ← 𝑋 𝑛𝑒𝑤 

21: end if 

22: end for 

23: 𝑡 = 𝑡 + 1 
24: end while 
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unction. The preference of this function is to select subsets whose fea-

ures are extraordinarily related with the class but uncorrelated with

ach other. While insignificant features that show low association with

he class ought to be ignored on the grounds, repetitive features are

hosen due to high relation with at least one of the rest of features. The

cknowledgment of a feature will rely upon the degree to which it pre-

icts classes in territories of the instance space not as of now anticipated

y different features. The feature subset assessment function [35] in CFS

s as: 

 𝑠 = 

𝑘 𝑟 𝑐𝑓 √ 

𝑘 + 𝑘 ( 𝑘 − 1) + 𝑟 𝑓𝑓 

(1)

In Eq. (1) , M s is the heuristic evaluation for a feature subset s in-

luding k features, 𝑟 𝑐𝑓 is the mean correlation degree between features

nd the category label, and 𝑟 𝑓𝑓 is the average inter-correlation degree

mong features. The evaluation of CFS is a method of correlation based

n feature subsets. A bigger 𝑟 𝑐𝑓 or smaller 𝑟 𝑓𝑓 in acquired subsets by

he method produce a higher evaluation value, and the set of features

ith the highest value found during the process is utilised to reduce the

ize of both the training and testing set. 

.1.2. Bat algorithm (BA) 

The original bat algorithm was developed by Xin-She Yang in

010 [36,37] . The main inspirations for these works were the echoloca-

ion behavior of microbats. As BA uses frequency tuning, it is, in fact, the

rst algorithm of its kind in the context of optimization and computa-

ional intelligence. Each bat flies randomly with a velocity 𝑣 𝑡 
𝑖 
, a location

 

𝑡 
𝑖 
, and a frequency f i at iteration t , in a 𝑑− dimensional search or solution

pace. The location can be considered as a solution vector to a problem

f interest. Among the n bats in the population, the current best solution

 ∗ found so far can be archived during the iterative search process. 

Defined by Yang [38] , the updating rules for location 𝑥 𝑡 
𝑖 
and velocity

 

𝑡 
𝑖 

at time step t are given by 

 𝑖 = 𝑓 𝑚𝑖𝑛 + ( 𝑓 𝑚𝑎𝑥 − 𝑓 𝑚𝑖𝑛 ) 𝛽 (2)

 

𝑡 
𝑖 
= 𝑣 𝑡 −1 

𝑖 
+ ( 𝑥 𝑡 −1 

𝑖 
− 𝑥 ∗ ) 𝑓 𝑖 (3)

 

𝑡 
𝑖 
= 𝑥 𝑡 −1 

𝑖 
+ 𝑣 𝑡 

𝑖 
(4)

here 𝛽 ∈ [0,1] is a random vector drawn from a uniform distribution.

For the local search part, once a solution is selected among the cur-

ent best solutions, a new solution for each bat is generated locally using

andom walk 

 𝑛𝑒𝑤 = 𝑥 𝑜𝑙𝑑 + 𝜀𝐴 

𝑡 (5)

here 𝜀 is a random vector drawn from a uniform distribution in [-1,1]

r a Gaussian distribution, while A 

t is the average loudness of all the

ats at this time step. 

In addition, the loudness 𝐴 

𝑡 
𝑖 

and the rate 𝑟 𝑡 
𝑖 

of pulse emission have

o be updated accordingly as the iterations proceed. The updating rules

or them can be written as 

 

𝑡 +1 
𝑖 

= 𝛼𝐴 

𝑡 
𝑖 

(6)

 

𝑡 +1 
𝑖 

= 𝑟 0 
𝑖 
(1 − 𝑒 − 𝛾𝑡 ) (7)

here 0 < 𝛼 < 1 and 𝛾 > 0 are constants. 

.1.3. CFS-BA approach for feature selection 

In this section, we proposed CFS-BA based feature selection ap-

roach, which is used to assess the importance and the correlation of the

elected feature subset. CFS-BA approach utilises correlation based fea-

ure technique to form the fitness functions and evaluation of integrity

f the reduced feature subset. 
For a feature subset S with k features, 𝑆 = ( 𝑠 1 , 𝑠 2 , … 𝑠 𝑘 ) , CFS assesses

he mean feature-class correlation and average inter-correlation among

eatures by using Eq. (1) . As one of classical filter algorithms, CFS can

asily select the subset of independently good features according to the

esult of correlation-based evaluation function. However, this feature

ubset may not be the best combination because of redundancy between

eatures. 

In order to remove the redundant features and reduce the dimension-

lity, BA, which inspired by the echolocation behavior of microbats, is

ntroduced. In BA, every solution of the problem is denoted by the lo-

ation of a bat, which can be represented by a vector. Bats fly in the

earch space to search for the best solutions and during this movement,

he current best solution found so far can be archived. The population

cans for the ideal arrangement by refreshing and updating the position

f every bat based on Eqs. (2)–(4) during the iterative search process. 

The feature selection process of the CFS-BA approach is presented in

lgorithm 1 . The main parts of the CFS-BA algorithm can be summarized

s follows: 

• Initialization (lines 1–4). The parameters of algorithm, generation

nd evaluation of the initial population are initialized here. 

• New solution generation (lines 7–8). Here, bats in the population

re moved in the search space according to updating rules of Eqs. (2)–

4) . 

• Local search process (lines 9–11). We select a solution among the

est solutions, then generate a local solution around the selected one by

andom walks. 

• Evaluation of the new solution (line 13). The feature subset assess-

ent function in CFS is utilized here to evaluate the new solution. 

• Archive of the new solution (line 14–17). The new solution which

eets our requirement needs to be archived here. After that, the loud-

ess 𝐴 

𝑡 
𝑖 

and the rate 𝑟 𝑡 
𝑖 

of pulse emission have to be updated using

qs. (6) and (7) . 

• Update of the best solution (line 19–20). We compare the evalua-

ion result of the archived solution and find the current best X best until

he iterations end. 
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.2. Ensemble classification 

For ensemble learning, the classification methods usually combine

ultiple base classifiers in some way to produce better accuracy [12] .

hese classifiers are powerful to solve the same problem and collec-

ively achieve a forecasting result with higher stability and accuracy by

reating multiple independent models and combining them [39] . The

lassical reasons for employing ensemble classifiers to improve the effec-

iveness are representational issue, statistical reason, and computational

eason. First, sometimes a single classifier is not qualified to obtain the

est representation in the hypothesis space, therefore, it is necessary to

ombine independent classifiers to improve the predictive performance.

econd, if the input dataset is not sufficient to train the learning algo-

ithm, the result may lead to a weak or false hypothesis. In the last case,

n order to produce a suitable hypothesis, an individual classifier could

pend a significant amount of computing time, in which the procedure

ill be more likely to cause problems. 

Bagging [40] and Boosting [41] are the two most popular algorithms

n ensemble learning, usually producing good results in classification

nd being widely chosen to build many ensemble models. Moreover,

he other well-known ensemble learning methods for improving the per-

ormance of classification are Voting [42] , Bayesian parameter aver-

ging [43] , and Stacking [44] . Likewise, ensemble methods have been

hown to improve accuracy in many use cases, including intrusion de-

ection. For example, the results in [13,14,20] proved that their pro-

osed ensemble models produce better performance of IDS than the one

sing a single classifier. For security professionals, ensemble classifiers

rovide mechanisms that aid in analysis such as similarity to existing

nown malicious or benign samples. 

Among decision tree algorithms, C4.5 has been widely used in the

eld of anomaly detection due to its high efficiency and its simple char-

cteristics. Meanwhile, random forest is the most representative algo-

ithm among ensemble learning methods, and it is generally more robust

nd can achieve better performances than single decision trees. More-

ver, Forest PA can use the strength of the entire feature space to gener-

te trees with high accuracy. With its novel weight assignment strategy

nd bootstrap sampling, Forest PA generates highly diverse trees while

etaining their higher individual accuracy. Therefore, C4.5, random for-

st, and Forest PA are selected to construct the ensemble for multi-class

ntrusion detection in this paper. 

For bagging algorithm, the base classifiers are generated in parallel

y bootstrap sampling. Boosting works by training a set of classifiers se-

uentially and combining them for prediction, where the later classifiers

ocus more on the mistakes of the earlier classifiers. However, sensitiv-

ty to noise leads to performance degradation when appearing wrong la-

els. Moreover, base classifiers usually are homogeneous in bagging and

oosting, which will be not suitable for three different base classifiers

C4.5, random forest, and Forest PA) in this paper. Although stacking

enerates an ensemble of heterogeneous learners, it will bring enormous

omputational complexity when generating different level models. Com-

ared to the above algorithms, in this paper, voting is more suitable for

eterogeneous learners ensemble with lower computational complexity

nd less time overhead. 

.2.1. C4.5 

C4.5 [45] is a typical decision tree algorithm which is developed

ased on the ID3 [46] algorithm. This algorithm passes through decision

ree, visits each node and select optimal split based on the maximisation

f the gain ratio, which is represented by the following formula: 

 𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 ( 𝐴 ) = 

𝐺 𝑎𝑖𝑛 ( 𝐴 ) 
𝑆𝑝𝑙 𝑖𝑡𝐼𝑛𝑓𝑜 ( 𝐴 ) 

(8)

In the process, an attribute with the highest information gain is cho-

en as splitting attribute for the node N . Information gain represents

ow much uncertainty in the set D is reduced after it is partitioned on
ttribute A , where the uncertainty can be calculated by entropy as: 

𝑛𝑡𝑟𝑜𝑝𝑦 ( 𝐷) = − 

∑
𝑥 ∈𝑋 

𝑝 ( 𝑥 ) 𝑙𝑜𝑔 2 𝑝 ( 𝑥 ) (9)

here X is the set of classes in D and p ( x ) is the proportion of number

f elements in class x to the number of elements in set D . 

Likewise, SplitInfo is the term which describes how equally the at-

ribute splits the data and can be calculated as: 

𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜 ( 𝐴 ) = − 

𝑛 ∑
𝑗=1 

|𝐷 𝑗 ||𝐷| 𝑙𝑜𝑔 2 
( |𝐷 𝑗 ||𝐷|

) 

(10)

here 
|𝐷 𝑗 ||𝐷| represents the weight of the 𝑗− th partition in the set D . 

Moreover, as an improvement of ID3 algorithm, C4.5 has the capa-

ility to model or classify both discrete and continuous attributes, and

an ignore missing attribute values in a dataset. 

.2.2. Random Forest (RF) 

Random Forest, proposed by Breimanis in [47] , is another decision

ree technique that operates by constructing multiple decision trees. It

akes thousands of input variables without variable deletion and classi-

es them based on their significance. RF can be described as an ensemble

f classification trees where every tree contributes with a single vote for

he task of the most frequent class to the input data. Compared to other

achine learning methods (e.g., support vector machine, artificial neu-

al network), there are fewer parameters to be specified when running

F. In RF, a collection of individual tree structured classifiers can be

efined as: 

ℎ 
(
𝑥, 𝜃𝑘 

)
, 𝑘 = 1 , 2 , … 𝑖 …

}
(11) 

here h represents RF classifier, { 𝜃k } stands for random vectors dis-

ributed independently identical, and each tree has a vote for the most

amous class at input variable x . The nature and dimensionality of 𝜃

epends on its use in tree construction. 

The key to the success of RF is the creation of each decision tree that

akes up the forest. A bootstrapped subset of the training dataset is

reated to train each tree in the forest. Due to this fact, on average, each

ree makes use of around two-thirds of the training dataset. The unused

lements are called by the Out Of Bag (OOB) samples, which are used

or inner cross-validation to evaluate the classification accuracy of RF. 

Significantly, RF has a low computational burden, and it is insen-

itive to the parameters and outliers. Besides, over-fitting is less of an

ssue compared to individual decision tree, and there is no need to prune

he trees which is a cumbersome task [48] . 

.2.3. Forest by penalizing attributes (Forest PA) 

Unlike some existing algorithms that use a subset of the non-class

ttributes, Forest PA [49] is an algorithm that builds a set of highly ac-

urate decision trees by exploiting the strength of all non-class attributes

vailable in a data set. At the same time, some weight-related concerns,

uch as weight assignment strategy and weight increment strategy, are

aken into account in order to retain individually accurate and promote

trong diversity. 

For the weights of the attributes that appear in the latest tree, For-

st PA will randomly update the weights for those attributes within a

eight-Range (WR), which can be defined as follows: 

 𝑅 

𝜆 = 

{ 

[0 . 0000 , 𝑒 − 
1 
𝜆 ] , 𝜆 = 1 

[ 𝑒 − 
1 
𝜆−1 + 𝜌, 𝑒 

− 1 
𝜆 ] , 𝜆 > 1 

(12)

here 𝜆 represents the level of the attribute and 𝜌 is used to ensure the

R for different levels be non-overlapping. For example, if an attribute

ppears in the root node then its 𝜆 = 1 . In the same way, if an attribute

s tested at a child node of the root node then its 𝜆 = 2 . 
Moreover, in order to address the negative effect of retaining weights

hich are not present in the latest tree, Forest PA has a mechanism to

radually increase weights of the attributes that have not been tested in
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Table 1 

Statistics of the three sets of the NSL-KDD dataset. 

Class NSL-KDD 

KDDTrain + KDDTest + KDDTest-21 

Normal 67,343 9711 2152 

DoS 45,927 7458 4342 

PRB 11,656 2421 2402 

R2L 995 2754 2754 

U2R 52 200 200 

Attacks 58,630 12,833 9698 

Total 125,973 22,544 11,850 
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he subsequent trees. Let an attribute A i is tested at Level 𝜌 of the 𝑇 𝑗−1 − th

ree with 𝜂 height and its weight is 𝜔 i . Then, the weight increment value

i of A i is calculated as: 

𝑖 = 

1 . 0 − 𝜔 𝑖 

( 𝜂 + 1) − 𝜆
(13)

.2.4. Vote 

Vote is a meta algorithm which performs the decision process by

pplying several classifiers [50] . It uses the power of several individual

lassifiers and applies a combination rule for the decision. For example,

inimum probability, maximum probability, majority voting, product

f probabilities, and average of probabilities are different algorithms for

ombination rules. In order to deal with the multi-class classification,

ajority voting could not be chosen because the number of classes is

ore than that of base classifiers. In this paper, average of probabilities

pproach is used to make decision, where the class label is determined

ased on the maximum value of the average of predicted probabilities. 

Suppose we have l classifiers 𝐶 = 

{
𝐶 1 , … , 𝐶 𝑙 

}
, and c classes Ω =

𝜔 1 , … , 𝜔 𝑐 
}
. For instance, due to the above base classifiers considered

n our experiment, l can be set to 3, and the value of c depends on the

umber of attack types. A classifier C i : R 

n → [0, 1] c accepts an object

 ∈ R 

n and outputs a vector 
[
𝑃 𝑐 𝑖 ( 𝜔 1 |𝑥 ) , …𝑃 𝑐 𝑖 ( 𝜔 𝑐 |𝑥 ) ], where 𝑃 𝑐 𝑖 ( 𝜔 𝑗 |𝑥 ) de-

otes the probability assigned by the classifier C i that object x belongs to

lass 𝜔 j . For each class 𝜔 j , let m j represents the mean of the probabilities

ssigned by the l classifiers, which can be calculated as: 

 𝑗 = 

1 
𝑙 

𝑙 ∑
𝑖 =1 
𝑃 𝑐 𝑖 ( 𝜔 𝑗 |𝑥 ) (14)

et 𝑀 = 

[
𝑚 1 , …𝑚 𝑐 

]
be the set of mean probabilities for c classes. Then,

 is assigned to the class 𝜔 k if m k is the maximum in M . 

. Evaluations and results 

As stated before, this paper aims to develop an efficient intrusion

etection system with high accuracy and low false alarms. For this pur-

ose, a hybrid method, combined CFS and BA named CFS-BA, is per-

ormed to determine a subset of the original features in order to elim-

nate the irrelevant features, and improve the classification efficiency.

n the classification step, an ensemble classifier combined three differ-

nt algorithms, C4.5, RF, and Forest PA based on the AOP combination

ule, is trained and tested based on three datasets. The experiments are

erformed by Weka 3.8.3 [51] on desktop PC with 3.6 GHz Intel Core

7-4790 processor and 16GB RAM. 

.1. Description of the benchmark datasets 

During the evaluation of IDS, one of the challenges faced by re-

earchers is finding a suitable dataset. Acquiring a real world dataset

hat represents the traffic flowing through the network without any sort

f anonymization or modification is a problem that has been continu-

usly encountered by the cybersecurity research community [52] . Even

n the cases where the data is allowed to be released or shared for public

se, it will be heavily anonymized or severely altered. This will cause a

ot of the essential data components that are considered critical to the

esearchers to be lost or no longer reliable. 

For this reason, many researchers have decided to use simulated

atasets such as the most well-known KDDCup’99 dataset [53] , or one of

ts contemporaries the NSL-KDD dataset [54] . Recently there has been

 significant effort to try and develop data sets that are reflective of

eal world data. In 2015, Kolias et al. [55] published Aegean WiFi In-

rusion Dataset (AWID), which includes real traces of both normal and

ntrusive 802.11 traffic. In addition, in 2017, the Canadian Institute for

ybersecurity (CIC) published an intrusion detection dataset named CIC-

DS2017 [56] , which resembles the true real-world data packet capture

PCAPs). Therefore, in this paper, experiments are conducted based on

he NSL-KDD, AWID, and CIC-IDS2017 datasets. 
.1.1. NSL-KDD dataset 

The NSL-KDD dataset [54] was proposed in 2009 as a new revised

ersion of the original dataset KDDCup’99 [57] . On the one hand, NSL-

DD retained the advantageous and challenging characteristics of KDD-

up’99. On the other hand, it addressed some drawbacks inherited from

he original dataset by eliminating redundant records, rationalizing the

umber of instances, and maintaining the diversity of selected samples.

t is worth noting that the NSL-KDD dataset is compiled to maximize

he difficulty of prediction, which constitutes its outstanding character-

stics. In order to group the records into five difficulty levels, the initial

ataset was evaluated using several benchmark classifiers, and each in-

tance was annotated with the number of its successful predictions [58] .

or each difficult level group, the amount of selected records is inversely

roportional to the record percentages from the original KDDCup’99

ataset. 

In this study, KDDTrain+, KDDTest+, and KDDTest-21 sets of the

SL-KDD dataset are used. The KDDTrain+ set contains total 125,973

nstances comprising of 58,630 instances of attack traffic and 67,343

nstances of normal traffic. Whereas, the KDDTest+ set contains total

2,544 instances, and as a subset of the KDDTest+ set, the KDDTest-21

et includes total 11,850 instances. Cross-validation is done on the KD-

Train+ set in our experiments, and to extend this benchmark, we also

onsider a validation test using simple hold-out (train-test) approach

pplied on KDDTest+ and KDDTest-21 sets. A detailed overview of the

nstances is shown in Table 1 . 

.1.2. Aegean wifi intrusion dataset (AWID) 

AWID was publicly available in 2015 as a collection of sets of WiFi

etwork data, which contain real traces of both normal and intrusive

ata collected from real network environments [55] . Each record in

he dataset is represented as a vector of 155 attributes, and each at-

ribute has numeric or nominal values. Based on the number of target

lasses, the dataset can be classified into AWID-CLS dataset and AWID-

TK dataset. AWID-CLS dataset groups the instances into 4 main classes

ncluding normal, flooding, impersonation, and injection, while AWID-

TK dataset has 17 target classes that belong to the 4 main classes. On

he other hand, based on the number of instances, all the datasets have

wo different versions: Full Set and Reduced Set. It is important to men-

ion that these two versions are not related. The reduced set was col-

ected independently from the full set at different times, with different

ools, and in different environments. 

For this research we have conducted experiments on the reduced

our class dataset (AWID-CLS-R-Tst) by using cross-validation method

or classification purposes. In general, AWID-CLS-R-Tst set includes total

75,643 instances, and more detailed information about the numbers of

pecific attacks can be seen in Table 2 . 

.1.3. CIC-IDS2017 dataset 

The CIC-IDS2017 dataset was published by Canadian Institute for

ybersecurity (CIC) in 2017, it contains benign and the most up-to-date

ommon attacks [56] . It also includes the results of the network traf-

c analysis using CICFlowMeter with labeled flows based on the time
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Table 2 

Statistics of the AWID and CIC-IDS2017 datasets. 

Class AWID Class CICIDS-2017 

CLS-R-Tst Wed. 

Normal 530,785 Normal 439,683 

Injection 16,682 DoS slowloris 5796 

Flooding 8097 DoS Slowhttptest 5499 

Impersonation 20,079 Dos Hulk 230,124 

DoS GoldenEye 10,293 

Heartbleed 11 

Attacks 44,858 Attacks 251,723 

Total 575,643 Total 691,406 
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c

tamp, source and destination IPs, source and destination ports, proto-

ols, and attacks (CSV files). This is one of the newest intrusion detection

atasets, which covers necessary criteria with updated attacks such as

DoS, Brute Force, XSS, SQL Injection, Infiltration, Port Scan, and Bot-

et. In detail, this dataset contains 2,830,743 records devised on 8 files

nd each record includes 78 different features with its label. 

In order to maintain the same order of magnitude of each dataset

hile taking into account the requirements of multi-classification, the

ednesday-workingHours set has been chosen for experiments through

ross-validation method. This set includes total 691,406 instances be-

onging to 6 categories, and the static information of the set is given in

able 2 . 

.2. Dataset preprocessing 

Data preprocessing is the most time consuming and essential step

n data mining. Realistic data typically comes from heterogeneous plat-

orms and can be noisy, redundant, incomplete, and inconsistent [59] .

hus, it is important to transform raw data into a format suitable for

nalysis and knowledge discovery. Therefore, in this research, the pre-

rocessing step involves data filtration, data transforming as well as data

ormalization. 

.2.1. Data filtration 

Due to the heterogeneity of the platforms, the raw data inevitably

ontain anomalous and redundant instances, which may have a nega-

ive influence on classification accuracy. In order to solve this problem,

hese records need to be removed from the dataset at the beginning of

ur experiments. For instance, the feature ‘Fwd Header Length’ appears

wice in the CIC-IDS2017 dataset, and ‘Flow Packets/s’ includes abnor-

al values such as ‘Infinity’ and ‘NaN’. Moreover, we have replaced

issing values with zeroes and dropped out the features with constants

alues as they do not contribute to the class distinction. For example,

he AWID-CLS-R-Tst set remains 84 features from the original 155 ones

fter data filtration. 
Table 3 

Selected features for the NSL-KDD, AWID, and CIC-IDS2017 d

NSL-KDD AWID 

No. Feature Name No. Feature Nam

3 service 1 frame.time_e

4 flag 15 radiotap.data

5 src_bytes 16 radiotap.chan

6 dst_bytes 17 radiotap.chan

14 root_shell 24 wlan.fc.frag 

26 srv_serror_rate 29 wlan.duration

29 same_srv_rate 32 wlan.ta 

30 diff_srv_rate 35 wlan.frag 

37 dst_host_srv_diff_host_rate 

39 dst_host_srv_serror_rate 
.2.2. Data transforming and normalization 

The utilized datasets contain symbolic, continuous, and binary val-

es. For instance, the feature ‘protocol type’ in the NSL-KDD datasets

ncludes symbolic values such as: ‘tcp’, ‘udp’, and ‘icmp’. As many classi-

ers accept only numerical values, the converting process is considered

ital and has a significant impact on IDS accuracy. In this paper, we re-

lace every single value with an integer in order to handle the symbolic

eatures. Moreover, different scales among features can degrade the clas-

ification performance, for example, features that take on large numeric

alues, e.g., for the CIC-IDS2017 dataset, ‘Flow Duration’ can dominate

he classifier’s model relative to features with relatively small numeric

alues such as ‘Total Fwd Packets’. Accordingly, normalization is a ‘scal-

ng down’ transformation which maps features onto a normalized range.

 simple and fast approach called minimum-maximum method [60] is

sed in our experiments, which can be defined as: 

 = 

𝑥 − 𝑥 𝑚𝑖𝑛 

𝑥 𝑚𝑎𝑥 − 𝑥 𝑚𝑖𝑛 
(15) 

here 𝑥 min and 𝑥 max represent the minimum and maximum values of

eature x . 

.3. Results and discussion 

The performance of IDS is evaluated based on its capability of clas-

ifying network traffic into a correct type. In order to avoid the effect

f data sampling when assessing the IDS, therefore, we conducted ex-

eriments by using repeated k-fold (kf) cross-validation method, and

he value of k is considered as 10. In this paper, all the performance

esults reported are the average value of outputs from 10 iterations of

0f validation approach, and each experiment is repeated with different

eed for avoiding biased results. More specifically, for each dataset, we

rovide the confusion matrix derived from the testing process of CFS-

A-Ensemble, and compare the performance of the proposed algorithm

ith no feature selection and some state-of-the-art methods in terms

f several detection metrics, including Accuracy (Acc), precision, De-

ection Rate (DR), F-Measure, Attack Detection Rate (ADR), and False

larm Rate (FAR). The mathematical calculations of the utilized evalu-

tion metrics are explained in [61] . 

First, essential features are identified by utilizing the proposed CFS-

A approach to evaluate the integrity of the reduced feature subset in the

eature selection stage. Then, candidate features are selected from the

riginal ones for the next stage. Table 3 shows the numbers and names

f selected features for NSL-KDD, AWID, and CIC-IDS2017 datasets. By

mplementing CFS-BA alone, the approach is seen to reduce the dimen-

ionality drastically and eliminate the irrelevant features of the dataset.

inally, in order to significantly improve the predictive performance of

DS, an ensemble classifier which consists of three different decision tree

lassifiers is used in a vote algorithm. 
atasets. 

CIC-IDS2017 

e No. Feature Name 

poch 1 Destination Port 

rate 6 Total Length of Bwd Packets 

nel.freq 13 Bwd Packet Length Mean 

nel.type.cck 15 Flow Bytes/s 

17 Flow IAT Mean 

 34 Bwd Header Length 

37 Min Packet Length 

50 Down/Up Ratio 

57 Subflow Bwd Bytes 

58 Init_Win_bytes_forward 

59 Init_Win_bytes_backward 

67 Idle Std 

68 Idle Max 
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Fig. 2. Normalized confusion matrices based on the NSL-KDD, AWID, and CIC-IDS2017 datasets. 

Table 4 

Performance classification for feature selection based on NSL-KDD with 10f validation. 

(a). The performance results based on the original features (41 features) 

Classifier Acc Precision DR F-Measure ADR FAR MBT(s) 

C4.5 0.941 0.945 0.941 0.943 0.913 0.035 16.91 

RF 0.949 0.944 0.949 0.947 0.903 0.021 14.98 

ForestPA 0.945 0.942 0.945 0.944 0.913 0.028 43.16 

Ensemble 0.953 0.951 0.953 0.952 0.919 0.016 51.44 

(b). The performance results based on the selected features using CFS-BA (10 features) 

Classifier Acc Precision DR F-Measure ADR FAR MBT(s) 

C4.5 0.988 0.987 0.988 0.988 0.986 0.012 2.93 

RF 0.991 0.988 0.991 0.989 0.987 0.009 8.63 

ForestPA 0.987 0.989 0.987 0.988 0.985 0.008 29.66 

Ensemble 0.998 0.998 0.998 0.998 0.997 0.001 36.28 
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Fig. 2 (a)–(c) separately indicate the multi-class classification per-

ormance of the proposed IDS with 10f cross-validation among the NSL-

DD, AWID, and CIC-IDS2017 datasets. It is observed that the perfor-

ance of most classifications is adequate, while several attacks can

ot be classified very well, such as ‘U2R’ and ‘Heartbleed’. As seen in

ables 1 and 2 , the numbers of these instances are much less than oth-

rs, which significantly affects the classification results of these attacks.

n detail, there are only 11 instances with the label “Heartbleed ” out of

51,723 attack instances in the CIC-IDS2017 and 52 “U2R ” instances

n the KDDTrain+ set, which poses a challenge for the IDS to correctly

lassify them. In general, the proposed method is not focused on a spe-

ific class, it is proposed for selecting relevant features for all classes,

hich could not guarantee the performance of every type of attacks,

specially some attacks with very few instances in the datasets. How-

ver, as the classification results for normal instances are pretty well

mong these datasets, the developed system can be used for intrusion

etection. 
Table 5 

Performance classification for feature selection

(a). The performance results based on the original

Classifier Acc Precision DR F

C4.5 0.954 0.953 0.999 0

RF 0.979 0.982 0.996 0

ForestPA 0.966 0.982 0.981 0

Ensemble 0.982 0.982 0.999 0

(b). The performance results based on the sele

Classifier Acc Precision DR F

C4.5 0.985 0.985 0.985 0

RF 0.992 0.992 0.992 0

ForestPA 0.990 0.989 0.990 0

Ensemble 0.995 0.995 0.995 0
.3.1. Comparison with no feature selection 

In order to evaluate the performance of the proposed IDS, we make

 comparison between the proposed feature selection approach and

ithout feature selection to distinguish attacks from benign instances.

hanks to the selection of relevant features by the proposed CFS-BA al-

orithm, the average values of these metrics, such as Acc, precision, DR,

-Measure, and ADR, have increased significantly. 

Table 4 summarizes the performance based on the NSL-KDD dataset,

hich includes the results of the base and ensemble classifiers. It is in-

icated that the ensemble classifier is not good enough in some metrics

ithout implementing feature selection. By contrast, the proposed CFS-

A-Ensemble method performs best on all the three sets. In detail, our

odel exhibits the highest accuracy of 0.998, F-Measure of 0.998, ADR

f 0.997 and the lowest FAR of 0.001 based on the NSL-KDD dataset. As

een in Table 5 , the proposed CFS-BA-Ensemble approach still achieves

he best performance results in most respects on the AWID dataset, such

s the highest accuracy of 0.995, the highest ADR of 0.959, and the
 based on AWID with 10f validation. 

 features (84 features) 

-Measure ADR FAR MBT(s) 

.976 0.789 0.034 94.93 

.989 0.783 0.004 142.84 

.981 0.784 0.019 435.11 

.990 0.784 0.002 488.46 

cted features using CFS-BA (8 features) 

-Measure ADR FAR MBT(s) 

.985 0.913 0.010 9.96 

.992 0.945 0.004 26.51 

.989 0.902 0.003 79.93 

.995 0.956 0.001 92.62 
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Table 6 

Performance classification for feature selection based on CIC-IDS2017 with 10f valida- 

tion. 

(a). The performance results based on the original features (78 features) 

Classifier Acc Precision DR F-Measure ADR FAR MBT(s) 

C4.5 0.960 0.961 0.984 0.973 0.918 0.016 212.59 

RF 0.968 0.985 0.981 0.983 0.946 0.019 244.85 

ForestPA 0.967 0.978 0.984 0.981 0.938 0.016 859.62 

Ensemble 0.977 0.991 0.988 0.990 0.956 0.012 977.94 

(b). The performance results based on the selected features using CFS-BA (13 features) 

Classifier Acc Precision DR F-Measure ADR FAR MBT(s) 

C4.5 0.983 0.996 0.989 0.992 0.974 0.011 32.02 

RF 0.993 0.995 0.998 0.996 0.984 0.003 58.04 

ForestPA 0.988 0.993 0.988 0.991 0.978 0.006 80.82 

Ensemble 0.999 0.999 0.999 0.999 0.999 0.001 98.42 
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owest FAR of 0.002. Each base classifier using the selected feature ex-

ibits higher accuracy and ADR than the ensemble classifier with the

riginal features, which strongly proves the effectiveness of the pro-

osed feature selection method. Similarly, the result of the comparison

n the CIC-IDS2017 dataset is shown in Table 6 , we observe that the

erformance of the proposed feature selection approach outperforms

hat of all features in every respect, and the CFS-BA-Ensemble approach

chieves the highest accuracy rate of 0.999, DR of 0.999, and ADR of

.999 with only 13 features, which also outperforms all other individ-

al classifiers. In contrast, the best accuracy values of the C4.5, RF, and

orestPA classifiers are 0.983, 0.993, 0.988 using CFS-BA based feature

election method, respectively. 

Furthermore, due to the dimensionality reduction of the subsets, the

roposed CFS-BA-Ensemble model reduces the time overhead when it

s applied to the feature selection and ensemble model. Tables 4–6 also

how a comparison of the average model building time (MBT) consumed

y single training based on the different numbers of features. For the

SL-KDD dataset, although it does not take much time to build the en-

emble model on this set, the reduction still takes almost 30% of the

riginal MBT when applying CFS-BA for feature selection. Due to the

uge amount of data with high dimensionality, the ensemble method

ith the original features takes approximately 500s and 1000s for the

WID and CIC-IDS2017 datasets separately. Thanks to the feature selec-

ion method, the ensemble model with CFS-BA has mitigated the MBT

onsiderably compared with that using all original features, all the MBTs

f CFS-BA-Ensemble model on these three datasets have been restricted

ithin 100s. Especially for the CIC-IDS2017 dataset, there is a signif-

cant reduction on the MBT of the ensemble classifier when using the

FS-BA based feature selection method, from 977.94s to 98.42s. 

.3.2. Comparison with other feature selection methods 

As explained in Section 4.1 , the benchmark datasets reflect a con-

emporary and complex threat environment. The increased number of

ttack classes and its highly imbalanced records pose a significant chal-

enge to every machine learning approach. In order to further evaluate

ur proposed IDS model, we compare it with some well-known feature

election methods, namely IG (Information Gain) [62] , IGR (Information

ain Ratio) [63] , GA (Genetic Algorithm) [64] , PSO (Particle Swarm Op-

imization) [65] , and MBAFS (Modified Bat Algorithm for Feature Se-

ection) [66] by conducting experiments based on these three datasets.

ikewise, in this comparative study we use the common metrics in the

ontext of Acc, F-Measure, ADR, and FAR. Especially, to figure out the

fficiency of the proposed IDS, the comparison has also been done in

erms of number of selected features and its selection time. Fig. 3 sum-

arizes the average performance of our model as compared to the other

eature selection methods based on the same proposed voting based en-

emble classifier. 

First, as shown in Fig. 3 (a), the accuracy of our proposed model

utperforms that of other algorithms based feature selection in every
ataset, and the proposed CFS-BA-Ensemble approach achieves the high-

st average accuracy rate of 99.81%, 99.52%, and 99.89% over the NSL-

DD, AWID, and CIC-IDS2017 datasets, respectively. Similarly, Fig. 3 (b)

ndicates that our proposed model exhibits better F-Measure than other

eature selection methods on all datasets through extracting more rele-

ant feature subsets, which increase the value of F-Measure from 0.969

o 0.998, 0.961 to 0.995, and 0.957 to 0.999 over these three datasets.

ext, the attack detection rate, which stands for the accuracy rate for the

ttack classes, is an important indicator to evaluate the performance of

n IDS. According to Fig. 3 (c), it can be observed that the attack detec-

ion rate of our proposed model ranges from 95.64% to 99.92%, which

ignificantly exceeds other feature selection methods based on any one

f the five sets. Moreover, as Fig. 3 (d) illustrates, our proposed CFS-

A based model achieves the lowest FAR values of 0.08%, 0.15%, and

.12% based on the NSL-KDD, AWID, and CIC-IDS2017 datasets sep-

rately. In comparison with other feature selection methods, our pro-

osed model has mitigated FAR considerably on each dataset and guar-

nteed the effectiveness of an IDS. 

Notably, Fig. 3 (e) and (f) exhibit the number of selected features us-

ng different algorithms and its selection time, which can indicate the

fficiency of an IDS. When compared to IG and IGR, although the pro-

osed method takes a little more time than them, CFS-BA selects less fea-

ures, and as seen in Fig. 3 (a), the accuracy of the proposed IDS is much

igher than that of IG and IGR. For GA and PSO based feature selection

ethods, each of them obtains less features than CFS-BA on the AWID

ataset, however, they need more feature selection time on all the five

ets and could not achieve better detection accuracy. MBAFS, a modi-

ed bat algorithm for feature selection, is considered to be most similar

o our feature selection method. According to Fig. 3 (a)–(d), MBAFS per-

orms better than any of other methods in terms of these performance

etrics except the proposed CFS-BA, and its performance is only slightly

orse than our method. Since MBAFS introduces random bats and mu-

ation mechanism, the search space is expanded in every iteration and

he subset may be generated in any uncertain direction. Therefore, as

ig. 3 (e) illustrates, the subset selected by MBAFS contains one more

eature than CFS-BA on any of these five sets, which may affect the per-

ormance of the IDS if the additional feature are not highly correlated.

n addition, as the number of iterations before convergence increases,

he feature selection time taken by MBAFS is more than ours, which

an be seen in Fig. 3 (f). In general, CFS-BA is superior to other feature

election methods in terms of performance and efficiency. 

.3.3. Comparison with other classifiers 

Similarly, to evaluate the performance of our proposed ensemble

lassifier, experiments have been conducted using different classifica-

ion algorithms among five preprocessed sets with CFS-BA feature selec-

ion. First, the proposed voting based ensemble classifier with AOP com-

ination rule is chosen, and we construct a stacking classifier with C4.5,

F, and Forest PA as base classifiers, and Logistic Regression (LR) [67] as
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Fig. 3. Comparison performance with other feature selection methods based on the three datasets. 
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eta classifier to make a comparison with our voting classifier. Second,

e select some widely studied ensemble algorithms, such as AdaBoost

AB) [68] and Gradient Boosted Machine (GBM) [69] to make a compar-

son. Third, some single classifiers like k-Nearest Neighbor (kNN) [70] ,

lassification and Regression Trees (CART) [71] , and Multi-Layer Per-

eptron (MLP) [72] have been chosen as well. 

However, an algorithm may not be able to achieve good results over

ll datasets, which makes quite difficult to compare different algorithms

ver multiple datasets. In order to perform the comparison of classi-

ers in a correct way [73] , it is necessary to statistically analyze the

ignificance of the classifiers’ performance. Thus, the significance tests

as been considered essential to find whether the classifiers are signif-
cantly different from each other or not [74] . In order to give a thor-

ughly comparative study, two statistical significance tests, Friedman

est [75] and Nemenyi post-hoc test [76] , are adopted. In our case, the

ull-hypothesis is that there is no performance difference among differ-

nt classifiers, and it can be rejected if at least one classifier is found

ignificantly different from at least one other classifier. Since there are

 classifiers to be compared in this case, Friedman test is chosen to prove

hether at least one classifier performs significantly better than another

ne over all datasets [77] . If the Friedman test reports a significant dif-

erence, to detect between which classifiers those differences appear,

he Nemenyi post-hoc test will be then proceeded for pairwise multiple

omparisons. 



Y. Zhou, G. Cheng and S. Jiang et al. Computer Networks 174 (2020) 107247 

Fig. 4. Comparison performance of per classifier across three datasets with 10f cross-validation. 
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For the Friedman test, it ranks the algorithms for each dataset sepa-

ately. For example, for a given dataset, the algorithm performing best

ets the rank of 1, the second best gets rank 2, and so on. After that,

riedman test will do it again over another dataset until we obtain all

ankings on all datasets. Let r ij be the rank of the j -th algorithm on the

 -th dataset, where 𝑖 = 1 , 2 , … , 𝑛, and 𝑗 = 1 , 2 , … , 𝑘 . Then, the average

ank of j -th algorithm can be calculated as Eq. (16) , and the Friedman

tatistic (F-Statistic) can be computed as Eq. (18) , where 𝜒2 
𝐹 

is calculated

s Eq. (17) . 

 𝑗 = 

1 
𝑛 

𝑛 ∑
𝑖 =1 
𝑟 𝑖𝑗 (16) 

2 
𝐹 
= 

12 𝑛 
𝑘 ( 𝑘 + 1) 

[ 

𝑘 ∑
𝑗=1 
𝑅 

2 
𝑗 
− 

𝑘 ( 𝑘 + 1) 2 

4 

] 

(17) 

 − 𝑆𝑡𝑎𝑠𝑡𝑖𝑐 = 

( 𝑛 − 1) 𝜒2 
𝐹 

𝑛 ( 𝑘 − 1) − 𝜒2 
𝐹 

(18) 

𝐷 = 𝑞 𝛼

√ 

𝑘 ( 𝑘 + 1) 
6 𝑛 

(19) 

If the null-hypothesis is accepted, F-Statistic will be distributed ac-

ording to the F-distribution for a given 𝛼 with 𝑘 − 1 and ( 𝑘 − 1)( 𝑛 − 1) de-

rees of freedom. In this study, the values of k and n are set as 7 and 3,

nd two values of 𝛼 (0.05 and 0.1) are considered. Otherwise, if we reject

he null-hypothesis, then the Nemenyi post-hoc test will be performed to

ompare all classifiers with each other. The performance of two classi-

ers is significantly different when the difference between their average
anks is greater or equal to the critical difference (CD), where CD can be

alculated as Eq. (19) . In Eq. (19) , k and n still represent the numbers of

lassifiers and datasets, and q 𝛼 is the critical value. Due to 7 classifiers

re used for comparison, according to Table 5 (a) in [74] , 𝑞 0 . 05 = 2 . 949
nd 𝑞 0 . 1 = 2 . 693 in our case. 

First, we analyze the average value of all mentioned metrics achieved

ith 10f cross-validation on the three datasets, which is shown in Fig. 4 .

t is observed from Fig. 4 (a) that Voting, GBM, and Stacking outperform

ther classifiers in terms of accuracy (99.81%, 99.55%, and 99.91%)

ver NSL-KDD, AWID, and CIC-IDS2017 datasets separately but MLP

chieves lowest accuracy values across all datasets. Similarly, Voting,

BM, and Stacking perform best in terms of F-Measure according to

ig. 4 (b). However, kNN, MLP, and AdaBoost perform worst with F-

easure of 0.9935, 0.9882, and 0.9928. In terms of ADR metric, our

roposed Voting based ensemble classifier performs best by achieving

9.7% and 99.92% on the NSL-KDD and CIC-IDS2017 datasets, and

ART achieves the highest ADR value (95.74%) on the AWID dataset,

hereas MLP is the worst performer over the three datasets. Fig. 4 (d)

ndicates the average FAR values of all classifiers over all three datasets.

oting, CART, and Stacking separately exhibit the lowest FAR values of

.084, 0.143, and 0.075 for NSL-KDD, AWID, and CIC-IDS2017 datasets.

owever, CART achieves the worst performance in terms of FAR for the

SL-KDD and CIC-IDS2017 datasets, and the worst performing classifier

s GBM for the AWID dataset. 

Then, the performance results are statistically assessed using Fried-

an and Nemenyi post-hoc test. According to experimental results, the

verage ranks of all the classifiers for 10f cross-validation are shown in

able 7 . Thus, the F-Statistic and p value for each performance metric
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Table 7 

Average ranks for 10f cross-validation across three 

datasets. 

Accuracy F-Measure ADR FAR 

Voting 1.667 1.967 1.467 1.867 

Stacking 3.133 2.933 3.600 2.733 

AdaBoost 3.867 5.033 3.733 3.333 

GBM 2.067 2.367 3.400 4.000 

kNN 5.467 5.233 5.533 5.533 

CART 4.867 4.633 3.467 4.533 

MLP 6.933 5.867 6.800 6.000 

Table 8 

Friedman test statistics for 10f cross-validation. 

Accuracy F-Measure ADR FAR 

F-Statistic 6.5665 2.0810 3.3242 1.7904 

p value 0.0029 0.1319 0.0363 0.1839 

𝛼 = 0 . 05 R A R A 

𝛼 = 0 . 1 R A R A 
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‘  
s computed, and Table 8 shows Friedman test statistics for 10f cross-

alidation results. From the results it is observed that p values under

ccuracy and ADR are less than 0.05, therefore the null-hypothesis is

ejected and we can conclude that the performance of the classifiers is

ignificantly different in terms of accuracy and ADR metrics. In order

o detect which classifier pairs perform significantly different, Nemenyi

ost-hoc test is performed, and the results of the pairwise comparison

ver accuracy and ADR values are presented in Fig. 5 and Fig. 6 . It is

ndicated that for accuracy metric the classifier’s performance is highly

ignificant (shown in Fig. 5 (a)) in the case of Voting-MLP and less signif-

cant (shown in Fig. 5 (b)) in the case of GBM-MLP, whereas remaining

airs are not significant. As shown in Fig. 6 , the classifier’s ADR mea-

ure is only found highly significant in case of Voting-MLP pair, while

ll other pairs are not significant. The experimental results show that

oting and GBM are suitable classifiers if the IDS demands high accu-

acy, and we highly suggest our Voting based ensemble classifier due to

t also shows outstanding performance in terms of ADR metric. 

.3.4. Comparison with other combination rules 

In this section, we explain the experimental results using CFS-BA-

nsemble approach with different combination rules we reached dur-
Fig. 5. Critical difference of all classi

Fig. 6. Critical difference of all classifiers in
ng the experiments. Similarly, the average accuracy values of outputs

rom 10 iterations of 10f validation approach are used for evaluation of

he models. As mentioned in Section 3.2.4 , minimum probability, maxi-

um probability, majority voting, product of probabilities, and average

f probabilities are common combination rules when using voting tech-

ique to construct an ensemble classifier. Therefore, in order to evalu-

te the multi-classification performance of these aggregation methods,

rom Tables 9–11 , we compare and analyze the average accuracy values

f each combination rule for each attack type of different datasets. 

Table 9 shows the accuracy values of each rule for the NSL-KDD

ataset. For ‘Normal’, ‘DoS’, ‘PRB’, and ‘R2L’, the average of probabili-

ies combination rule achieves the highest performance accuracy values

f 99.90%, 99.92%, 99.48%, and 94.57% compared to the other combi-

ation rules. Although the performance of majority voting rule is better

han average of probabilities in ‘U2R’ attack, the improvement in ac-

uracy may lead to only one more attack instance identified due to the

umber of ‘U2R’ instances in the NSL-KDD dataset. Therefore, compared

o majority voting, we prefer to use average of probabilities combination

ule for more accurate classification on most instances of the NSL-KDD

ataset. 

According to the results shown in Table 10 , the highest accuracy

alues of 99.85%, 99.98%, and 92.71% are obtained for ‘Normal’, ‘In-

ection’, and ‘Flooding’ with average of probabilities combination rule

ased on the AWID dataset. For the ‘Impersonation’ attack, the perfor-

ance of maximum probability rule is slightly better than AOP but,

hen we consider most of the cases and the difference between accu-

acy values for two cases, we still suggest the average of probabilities

ule for the AWID dataset. Similarly, as shown in Table 11 , it is ob-

iously observed that the best performance is still achieved with the

verage of probabilities combination rule for most classes of the CIC-

DS2017 dataset, such as ‘Benign’, ‘DoS slowloris’, ‘DoS Hulk’, and ‘DoS

oldenEye’. The majority voting combination rule achieves the high-

st accuracy of 99.02% for ‘DoS Slowhttptest’, however, it produces the

orst accuracy of 97.77% for ‘DoS Hulk’ and has no advantages for

ther types of attacks when compared to the average of probabilities

ombination rule. According to results in this table, it can also be in-

icated that the performance of the maximum probability combination

ule for ‘Heartbleed’ (90.91%) is better than the other rules. However,

s seen in Table 2 , there are only 11 instances of ‘Heartbleed’ contained

n the CIC-IDS2017 dataset. The advantage on the classification for

Heartbleed’ attacks cannot make up for its drawbacks on the other at-
fiers in term of accuracy metric. 

 term of attack detection rate metric. 
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Table 9 

Comparison of different combination rules under the NSL-KDD dataset based on accuracy. 

Average of probabilities Majority voting Product of probabilities Minimum probability Maximum probability 

Normal 99.90 99.75 98.67 98.67 98.71 

DoS 99.92 99.63 99.48 99.48 99.32 

PRB 99.48 98.53 97.32 97.32 98.69 

R2L 94.57 93.38 90.55 90.15 89.61 

U2R 55.77 57.69 53.85 53.85 51.92 

Table 10 

Comparison of different combination rules under the AWID dataset based on accuracy. 

Average of probabilities Majority voting Product of probabilities Minimum probability Maximum probability 

Normal 99.85 99.75 98.67 98.67 98.71 

Injection 99.98 99.90 98.91 98.91 99.15 

Flooding 92.71 90.16 88.92 89.29 86.45 

Impersonation 93.21 91.89 89.45 89.45 93.63 

Table 11 

Comparison of different combination rules under CIC-IDS2017 dataset based on accuracy. 

Average of probabilities Majority voting Product of probabilities Minimum probability Maximum probability 

Benign 99.88 99.73 97.80 97.82 97.34 

DoS slowloris 99.26 98.34 97.48 97.48 96.64 

DoS Slowhttptest 98.95 99.02 97.29 97.29 96.02 

Dos Hulk 99.97 97.77 98.56 97.80 97.77 

DoS GoldenEye 99.59 99.10 97.64 97.64 97.15 

Heartbleed 81.82 81.82 72.73 72.73 90.91 
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acks when in comparison with the average of probabilities combination

ule. 

Based on the experimental results on the three datasets, therefore,

n this study, we decided to apply the AOP as combination rule in our

roposed CFS-BA-Ensemble model. 

.3.5. Comparison with the state of the art methods 

NSL-KDD dataset provides some different test sets, such as KD-

Test+ and KDDTest-21 for benchmarking the machine learning algo-

ithms. To evaluate the proposed model on unseen attacks, we have con-

ucted experiments with the proposed CFS-BA-Ensemble model by using

he datasets KDDTrain+ for training and KDDTest+ and KDDTest-21

or testing. Fig. 7 indicates the multi-class classification performance of

he proposed IDS based on the KDDTest+ and KDDTest-21 test sets. As

een in Fig. 7 (a), the proposed model can achieve the accuracy of 0.97

or normal traffic, whereas 0.85 and 0.89 for ‘DoS’ and ‘PRB’ attacks

ased on the KDDTest+ set. Similarly, it can be observed from Fig. 7 (b)

hat our method can obtain the accuracy of 0.87, 0.68, and 0.87 for
Fig. 7. Normalized confusion matrices based 
Normal’, ‘DoS’, and ‘PRB’ instances. Moreover, our proposed method

btains accuracy values of 0.62 and 0.42 for the ‘R2L’ and ‘U2R’ attacks

n KDDTest+, which are similar to that on KDDTest-21. On one hand,

he proposed model has been trained on the KDDTrain+ set, where the

R2L’ and ‘U2R’ instances occupy the smallest proportion of all instances.

n the other hand, the ‘R2L’ and ‘U2R’ instances are the same in the KD-

Test+ and KDDTest-21 set according to Table 1 , so the classification

erformance for them is almost the same. 

To extend the benchmark, we also have compared our CFS-BA-

nsemble with the performance achieved by previous studies that use

he datasets KDDTest+ and KDDTest-21 for testing. The comparison re-

ults with some of the existing approaches on these two sets are shown

n Table 12 . The highest detection accuracy is achieved by the proposed

pproach based on the experimental results on KDDTest+, which out-

erforms the other recent IDS techniques, including FSSL [78] , FSSL-

L [79] , and TSE-IDS [28] . Besides having superior detection accuracy,

he proposed method also outperforms significantly other approaches in

erms of detection rate metric. Even though EM-FS [14] performs best
on the KDDTest+ and KDDTest-21 sets. 
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Table 12 

Comparison results with other existing methods on KDDTest+ and KDDTest-21. 

Method Dataset Feature selection Classification method # Features Acc(%) DR(%) FAR(%) 

NBTree [54] KDDTest + N/A NB Tree 41 82.02 N/A N/A 

Fuzzy [80] KDDTest + N/A Fuzzy classifiers 41 82.74 86.7 3.9 

SVM [81] KDDTest + N/A SVM 41 82.37 82 15 

FS + GAR-forest [82] KDDTest + Symmetrical GAR-forest 32 85.056 85.1 12.2 

TDTC [83] KDDTest + LDA + PCA NB + CF-kNN N/A 84.86 N/A 4.86 

FSSL [78] KDDTest + Clustering FSSL 41 84.12 N/A N/A 

EM-FS [14] KDDTest + IGR Bagging(C4.5) 35 84.25 N/A 2.79 

FSSL-EL [79] KDDTest + PCA Ensemble(CART) 20 84.54 N/A 5.31 

TSE-IDS [28] KDDTest + Hybrid Two-stage Ensemble 37 85.797 86.8 11.7 

NBTree [54] KDDTest-21 N/A NB Tree 41 66.16 N/A N/A 

FSSL [78] KDDTest-21 Clustering FSSL 41 68.82 N/A N/A 

FSSL-EL [79] KDDTest-21 PCA Ensemble(CART) 20 71.29 N/A 20.35 

TSE-IDS [28] KDDTest-21 Hybrid Two-stage Ensemble 37 72.52 72.5 18.00 

Proposed KDDTest + CFS-BA Voting(C4.5,RF,ForestPA) 10 87.37 87.4 3.19 

Proposed KDDTest-21 CFS-BA Voting(C4.5,RF,ForestPA) 10 73.57 73.6 12.92 

N/A: name not available. 

Table 13 

Comparison results with other state of the art binary classification approaches. 

Method Dataset Feature selection Classification method # Features Acc(%) DR(%) FAR(%) 

FRCM [92] KDDTrain + Greedy Stepwise Fuzzy Ownership NN 11 99.6356 99.6145 0.309 

FS-EL [84] KDDTrain + CFS + PSO Boosting(CART) 11 99.7285 99.77 N/A 

OneR-BN [93] KDDTrain + OneR BN + TAN N/A 99.7412 99.7646 0.2792 

TSE-IDS [28] KDDTrain + Hybrid Two-stage Ensemble 37 96.388 N/A N/A 

DEMISe [86] AWID-CLS-R Autoencoder,MI RBFC 7 98 99.04 3 

SSLA [94] AWID-CLS-R N/A Ladder Network 95 99.28 99.45 0.23 

DARE [91] CIC-IDS2017(Wed.) N/A One-class SVM 10 66 57 N/A 

XGBoost-IDS [85] CIC-IDS2017(Wed.) N/A XGBoost 80 91.36 98.38 12 

ZED-IDS [95] CIC-IDS2017(Wed.) N/A Autoencoder 83 95.73 95.82 4.32 

DeepWindow [87] CIC-IDS2017(Wed.) MI + MIC LSTM N/A 99.5 99.4 N/A 

HELAD [27] CIC-IDS2017(Wed.) DIS + DBN Autoencoder + LSTM 50 99.58 99.58 2.15 

Proposed KDDTrain + CFS-BA Voting(C4.5,RF,ForestPA) 10 99.81 99.8 0.08 

Proposed AWID-CLS-R CFS-BA Voting(C4.5,RF,ForestPA) 8 99.52 99.5 0.15 

Proposed CIC-IDS2017(Wed.) CFS-BA Voting(C4.5,RF,ForestPA) 13 99.89 99.9 0.12 

N/A: name not available. 
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n terms of FAR metric, it only achieves the accuracy of 84.25% based

n 35 features. However, our proposed method can obtain higher accu-

acy of 87.37% with FAR of 3.19% based on only 10 features, which

till outperforms EM-FS to some extent. Moreover, according to the

xperimental results tested on the KDDTest-21 set, the proposed ap-

roach can achieve the accuracy of 73.57%, DR of 73.6%, and FAR

f 12.92% with a 10-feature subset, which clearly outperforms other

tate of the art classifiers in terms of all the evaluation metrics shown

n Table 12 . 

In order to further interpret the advantages of the proposed ap-

roach, in this section, some state of the art studies applied on each

ataset are compared with our proposed CFS-BA-Ensemble method.

ore precisely, the comparison includes the feature selection tech-

iques, the classification method, the number of selected features, ac-

uracy, FAR, and DR for intrusion detection. Furthermore, to compare

ore fairly with these existing methods, we ensure that the datasets used

y these methods, even if the specific version of the datasets, are the

ame as ours. Similarly, these existing methods all adopt cross-validation

pproach. The results of our proposed method compared to the existing

pproaches in each dataset are presented in Tables 13 and 14 . 

Although the multi-class classification performance of our proposed

ethod has been proven through experiments, to provide more ref-

rence for the readers, we still compare the results of our CFS-BA-

nsemble method with other earlier researches in binary classifica-

ion based on NSL-KDD, AWID, and CIC-IDS2017 datasets, which is

hown in Table 13 . First of all, it can be seen in Table 13 that our

roposed model outperforms other similar ensemble classifiers, such as

S-EL [84] , XGBoost-IDS [85] , and TSE-IDS [28] when using 10f cross-

alidation as a validation technique. There are also some deep learning
ethods for IDS in the current literature such as DEMISe [86] , Deep-

indow [87] , and HELAD [27] . Even though HELAD performs very

ell in terms of accuracy rate, DR, and FAR, the proposed method can

till achieve a better performance compared with these methods. When

ompared to these binary classification methods, the proposed CFS-BA-

nsemble method has a slight advantage on accuracy and DR against all

f them applied on the three datasets. And although some of previous

tudies did not provide data for FAR, it achieves extremely low FAR by

.08%, 0.15%, and 0.12% across all datasets, which is a useful prop-

rty for real-world IDSs. Additionally, the proposed method may not

e the best by considering the number of selected features, however, it

s worth selecting only a few more features to effectively improve the

erformance of the classifier. 

As shown in the following Table 14 , we then compare the perfor-

ance of our proposed method, CFS-BA-Ensemble, with these existing

ethods for multi-class attack classification. For the NSL-KDD dataset,

R+FS [88] exhibits a high accuracy value of 99.43% based on the

elected 6 features, however, the proposed approach achieves higher

ccuracy by 0.38% with 4 more features needed. Similarly, in contrast

o earlier ensemble methods on AWID and CIC-IDS2017 datasets, like

VWIDS [89] , ELWNIDS [90] , and DARE [91] , the proposed approach

chieves better performances in accuracy and DR while limiting FAR at

 lower level. 

In general, the proposed method achieves promising results in the

ontext of accuracy rate, DR, and FAR across the NSL-KDD, AWID, and

IC-IDS2017 datasets in comparison with the earlier studies. However,

t should be noted that Table 13 and 14 just provide a snapshot of com-

arison between our proposed model and the state of the art methods

n intrusion detection problem. Thus, there might be some limitations



Y. Zhou, G. Cheng and S. Jiang et al. Computer Networks 174 (2020) 107247 

Table 14 

Comparison results with other state of the art multi-class classification approaches. 

Method Dataset Feature selection Classification method # Features Acc(%) DR(%) FAR(%) 

AR-C4.5 [96] KDDTrain + Attribute Ratio C4.5 22 99.794 N/A N/A 

SS-BN [97] KDDTrain + Sequential Search Bayesian Network 11 98.98 N/A 0.60 

OR + FS [88] KDDTrain + IQR,CFS + BFS kNN 6 99.43 N/A N/A 

IG-RT [98] AWID-CLS-R IG Random Tree 41 95.12 92 0.538 

MVWIDS [89] AWID-CLS-R N/A Voting(ET,RF,Bagging) 20 96.32 96 N/A 

ELWNIDS [90] AWID-CLS-R CFS RF 18 99.096 N/A 0.248 

DARE [91] CIC-IDS2017(Wed.) N/A RF 10 98 98 N/A 

DeepDetect [99] CIC-IDS2017(Wed.) N/A ANN 80 98.694 98.694 1.882 

XGBoost-IDS [85] CIC-IDS2017(Wed.) N/A XGBoost 80 99.54 99.54 0.15 

Proposed KDDTrain + CFS-BA Voting(C4.5,RF,ForestPA) 10 99.81 99.8 0.08 

Proposed AWID-CLS-R CFS-BA Voting(C4.5,RF,ForestPA) 8 99.52 99.5 0.15 

Proposed CIC-IDS2017(Wed.) CFS-BA Voting(C4.5,RF,ForestPA) 13 99.89 99.9 0.12 

N/A: name not available. 
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n this comparison. For example, data processing method, parameter

etting of the algorithm, and many other experimental factors are all

nknown for the existing techniques. Although we have tried to make

s fair a comparison as possible, we cannot claim that our proposed

ntrusion detection model always performs better when compared to

ny of the other methods in the context of intrusion detection. How-

ver, according to the comparison results indicated in Table 13 and 14 ,

ur proposed CFS-BA-Ensemble method still provides a powerful com-

etitive advantage in the intrusion detection domain. 

. Conclusions 

Although many machine learning approaches have been proposed

o increase the efficacy of IDSs, it is still a problem for existing intru-

ion detection algorithms to achieve good performance. In this paper,

o deal with the high-dimensional and unbalanced network traffic, we

ropose a novel intrusion detection framework, which is based on the

eature selection and ensemble learning techniques. First, we propose

 CFS-BA algorithm with the aim of selecting the optimal subset based

n the correlation between features. Then, the ensemble classifier based

n C4.5, RF, and ForestPA with the AOP rule is introduced to construct

he classification model. Finally, the proposed IDS is evaluated by 10f

ross-validation over three intrusion detection datasets. 

The experimental results are promising with an accuracy of classi-

cation equal to 99.81%, 99.8% DR and 0.08% FAR with a subset of

0 features for the NSL-KDD dataset, and the obtained results for the

WID provide accuracy of 99.52% and 0.15% FAR with a subset com-

osed of only 8 features. Remarkably, our model achieves the highest

ccuracy of 99.89% and DR of 99.9% on the subset of 13 features for

he CIC-IDS2017 dataset. Then, the comparison with no feature selec-

ion method demonstrates encouraging performance on several metrics,

nd it should be noted that our proposal sharply reduces the MBT from

77.94s to 98.42s on the CIC-IDS2017 dataset. Our method also outper-

orms related feature selection approaches in terms of Acc, F-Measure,

DR, and efficiency while limiting FAR at relatively low levels. In ad-

ition, our solution shows outstanding performance in terms of ADR

etric when compared to other classification algorithms, and the com-

arison results with the state of the art methods indicate that the pro-

osed CFS-BA-Ensemble method can provide a powerful competitive ad-

antage in the intrusion detection domain. Although the proposed CFS-

A Ensemble method has indicated superior performance, in the future

ork, its capability could be further improved to deal with rare attacks

rom the massive network traffic. 
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