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Abstract: 1 
Traffic behavior in a large-scale network can be viewed as a 
complicated non-linear system, so it is very difficult to describe 
the long-term network traffic behavior in a large-scale network. In 
this paper, according to the non-linear character of network traffic, 
the time series of network traffic is decomposed into trend 
component, period component, mutation component and random 
component by different mathematical tools. So the complicated 
traffic can be modeled with these four simpler sub-series tools. In 
order to check the decomposed model, the long-term traffic 
behavior of the CERNET backbone network is analyzed by means 
of the decomposed network traffic. The results are compared with 
the ones of ARIMA model. According to the autocorrelation 
function value and predicting error function, the compounded 
model can get higher error precision to describe the long-term 
traffic behavior. 
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1 Introduction 
The traffic behavior and its tendency have bothered network 
managers for quite a long time, and is still a not fully understood 
problem for network management and planning. The underlying 
problem is that it is difficult to describe and model traffic of 
large-scale network. In order to research network behavior, firstly 
it is necessary to analysis the measured traffic and to find its 
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statistical laws, such as the work done by Thompson in 1997[1]. 
Secondly, according to the statistical rules found, some traffic 
models are built, such as the establishment of self-similar model 
for Ethernet network traffic in 1994 [2]. If the time-scale of 
network traffic is considered, the network traffic behavior will be 
different in different time-scale. Paxson and Floyd [3] showed that 
the traffic behavior of millisecond-time scale isn’t self-similar by 
the influence of network protocol. Due to the influence of 
environment, the traffic behavior whose time-scale is larger than 
ten minutes isn’t also self-similar and is a non-linear time-series. 
Only the traffic behavior in second-time scale is self-similar. In 
the paper, the traffic behavior model whose time-scale is larger 
than ten minutes, is concerned. 

It is very important to research traffic time-series model in order to 
describe traffic behavior. The traditional long time-scale traffic 
model can only model smoothing process and some special 
non-smoothing process. AR [4] (Auto Regressive) model, MA 
(Moving Average) model, and ARMA [5] (Auto Regressive 
Moving Average) model can deal with smoothing process. ARIMA 
[5] (Auto Regressive Integrated Moving Average) model and 
ARIMA seasonal model [6] can describe the uniform 
non-smoothing process. A large-scale network itself is a complex 
non-linear system, and is influenced by many environment factors, 
which is similar with water-volume time series that can be 
decomposed into mutation item, periodic item, trend item, random 
item [7]. So network traffic also can be considered to be the 
combination of periodic item, trend item, random item, and 
mutation item, which is very difficult to describe these traffic 
characters with a traditional traffic time-series model. 

According to these characters of traffic behavior, in the paper the 
traffic time-series is decomposed into four simple sub-components: 
mutation component, trend component, period component, and 
random component. Firstly, based on the fact that median is the 
robust estimation of mean, the mutation component of long-term 
traffic is removed. Secondly, the trend component is separated 
from the rest traffic components by the GM(1,1) model of gray 
system theory. Thirdly, the period component is separated from the 
rest traffic components by the period wave theory. Last, the rest 
components are modeled on the AR(P) model of time-series theory. 
So the long-term traffic model can be obtained by combining the 
theory models of three sub components: trend component, period 
component, and random component. Finally, in the paper some 
CERNET traffic data are modeled with the compounded model 



 

and the traditional ARIMA seasonal model respectively, and the 
analyzed results of two kinds of models are compared and 
analyzed. 

2 Traffic Compounded Model 
Network user behavior is influenced by environment, so network 
traffic behavior includes both rule and abnormity. In addition, a 
large-scale network itself is a non-linear system, so the non-linear 
long time-scale traffic can behave the characters of mutation, trend, 
period, and randomness. According to the traffic characters, the 
network traffic long time-scale time series X(t) can be separated 
into trend component A(t), period component P(t), mutation 
component B(t), and random component R(t). So the long-scale 
time series can be described as 

X(t)=B(t)+A(t)+P(t)+R(t)            (1) 
In the equation (1), X(t) is the rule traffic time-series. B(t) is 
effected by exterior environment mutation factors, and A(t) 
reflects the long term changed trend of network usage or 
environment factors, and P(t) reflects the periodic movement of 
traffic phenomena. B(t), A(t), P(t) show the determinate factors of 
traffic time series change. The random component R(t) can be 
decomposed into the smoothing random time series component S(t) 
and simple random component N(t) continuously.  

R(t)=S(t)+N(t)                   (2) 
In the five components, the mutation component and pure random 
component belong to zero memory components. A(t), P(t), S(t) are 
the memory components that describe the long term trend, period, 
and smooth process of network traffic behavior. If the three 
component models can be modeled as a(t), p(t), and s(t) 
respectively, then the traffic model x(t) of X(t) can be modeled as  

x(t)=a(t)+p(t)+s(t)              (3) 
Therefore, according to equation (1) and (2), the network traffic 
can be divided into five sub-components with different 
mathematics tools respectively. Then the trend component, period 
component, and smoothing random component are modeled 
separately. The raw traffic time-series model can be obtained by 
the equation (3). 

2.1 Decomposing Mutation Item 
The basic idea of decomposed mutation item is to produce a 
smoothing estimate of curve firstly, then we can obtain a error 
time-series that is subtracted the smoothing curve from 
measurements of network traffic. If the error point is larger than 
the appointed threshold, then that point is considered a mutation 
point. The method bases on the fact that the median is a robust 
estimation of mean. The algorithm that the mutation component is 
removed from traffic time series X(t) is as following. 

Step 1. A new time series X’(t) is constructed by traffic time series 
X(t). 

X'(t) = middle(X(t-2), X(t-1), X(t), X(t+1), X(t+2))  (4) 
Where middle() is a function that obtains a median from data in 
bracket, and t [2, n∈ -2]. 

Step 2. X’’(t) is constructed from X’(t). 
X’’(t) = middle(X’(t-1), X’(t), X’(t+1))    (5) 

Where t [3, n∈ -3]. 
Step 3. X’’’(t) is constructed with X’’(t). 

X’’’(t) = X’’(t - 1)/4 + X’’(t)/2 + X’’(t + 1)/4   (6) 
Where t [4, n∈ -4]. 
Step 4. If  |X(t) – X’’’(t)| > k，then X(t) is replaced by the linear 
inner inserted value. Where t [4, n∈ -4], k is a predefined value. 
Every measuring point in the [4, n-4] aggregate is computed with 
the fourth step repeatedly, till the mutation item B(t) is separated 
from the traffic time-series X(t).  

2.2 Trend Item Decomposed Model 
GM(1,1) is used to separate A(t) from the complex traffic time 
series X1(t) that includes trend item, period item, and random item. 
The algorithm is described as following. 

Step 1. Accumulated equation is constructed. Traffic series X1(t) 
is expressed  as equation (7). 
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Where X1(0) is equal to X1(t) that doesn’t contain the mutation 
component, and X1i(0) means traffic bandwidth on ith time, and 
i [0, n]. The equation (7) is accumulated in turn, and X1(1) is ∈

obtained. 
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X10(1)=X10(0), X1i(1) is the network traffic throughput from 
time 0 to time i. Because the distribution of the series X1(1) can be 
simulated by exponential function, so the smoothing discrete 
coefficient can be expressed with differential equation. The one 
order differential coefficient function is expressed by function (9), 
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and its result is computed by equation (10), 
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where a and b are the parameters that must be estimated. 

Step 2. The parameters a and b are estimated. The evaluation can 
obtain with the method of least squares, 

XBY =               (11) 

where  
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Step 3. If the parameters a and b are estimated, then the A(t) can 
be extracted from X(t). The model a(t) of A(t) is expressed in 
equation (8).  

)1(
1
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According to the equation (10) and (12), the traffic model can be 
obtained by equation (13). 
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Let X2(t) = X1(t) – a(t) = P(t) + R(t) be the rest time-series that 
B(t) and A(t) be separated from X(t), so X2(t) is a new time series, 
whose axes is A(t). The advantage of this new time-series is that it 
emphasizes the effect of P(t).  

2.3 Period Item Decomposed Model 
X2(t) is considered as the superposition of some different period 
waves. So firstly some obvious periods are separated from X2(t) in 
turn, then these periods are accumulated into P(t). Its algorithm is 
described as following. 

Step 1. Lists all possible period in X2(t). Before the period is 
analyzed, the number of periods contained in the time series is 
unknown, so each period must be tested separately.  
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Where n is the length of X2(t), and K is the maximum possible 
period number. 

Step 2. Computes the square sum of deviating mean, which 
include the square sum of deviating mean of both inner team 
(equation 15) and between teams (equation 16). 
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where k is the chosen period length, m is the number of a team, yij 
is the sequence value X2(t) whose freedom degree is f2 = n – k, f3 
= n - 1. 
Step 3. Compute the variance ratio between different test periods.  
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Step 4. Verifies the variance. A confidence limit α is chosen, e.g. α 
is equal to 0.05. Then the F distribution table [7] is checked to get 
Fα. If F> Fα, then the test period exists, otherwise the test period 
does not exist, and skip the step five. 
Step 5. Tests k from 2 to K, where K = ⎣n/2⎦ and n is the length of 
X2(t), until the time series does not have obvious period.   

2.4 Random Item Decomposed Model 
Let X3(t) = X2(t) – p(t) = R(t) = S(t) + N(t), and a smoothing 
random item S(t) is expected to be extracted from X3(t).  
X(t) =  

...)2()1()( 2,1, +−+−= txtxtx pp ββ  

)(, ptxpp −+ β                 (18) 

where βp,j (j=1,2,…,P) is the auto-regression coefficient, and P is 
the order number. The algorithm is described as following. 
Step 1. Computes the model coefficient. 
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whereβi,j is the auto-regression coefficient, and γk is the k order 
auto-correlation coefficient of X3(t),  
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Step 2. Computes the order number of model that can be ensured 
according to AIC rule. 
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where 3X  is the mean of X3(t), n is the length of X3(t). 

Step 3. Computes the smooth time-series model s(t). Firstly p 
values of data in the preceding s(0) are defined, then s(t) is 
evaluated from X3(t) reversely in order to obtain the data s(-1), 
s(-2), … , s(-p) before the measuring points, so as to get  equation 
(21). 

...)2()1()( 2,1, +−+−= tststs pp ββ      

)(, ptspp −+ β     t [0, n]   ∈    (21) 

Random item of the measuring points can be estimated by means 
of equation (21). 

3 Analysis of Network Traffic 
In order to verify the compound model, three different time-scale 
network traffics are analyzed and modeled. The first group of 11 
days data (CERNET01, in figure 1),  

Figure1 cernet01 time-series
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whose timescale is one hour, comes from one backbone router of 
CERNET in 2001. The second group of 121 days data 
(CERNET02, in figure 2), whose time-scale is one day, 

Figure 2 cernet02 time-series
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Figure3 nsfnet time-series
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also comes from CERNET. The third group of data (NSFNET, in 
figure 3), whose timescale is one week, comes from one national 
backbone route of NSFNET from Aug. 1, 1988 to Jun. 30, 1993 
[8].  

3.1 Model Parameters  
Three kind traffic trace are modeled by the compound model 
algorithm, and these model parameters are listed in table 1.  
 

Table1: Model Parameters of three Trace 

tra
ce

 

  cernet1 cernet2 nsfnet

A -0.0009 -0.0052 -0.018A(t) B 121.109 149.592 108.96
period 24 7 26 

A -0.0056 0.0003 -0.406P(t)
B 152.802 50.804 84.47

0.6863 0.6842 0.702
0.0352 0.1016 0.008

 -0.0090 0.039
 -0.1706 -0.144
 0.0639  
 0.0711  
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S(t) AR(p)

 -0.0011  

3.2  Model Analysis 
The auto-correlation function ACF(i) can reflect the traffic long 
term behavior. Because the trend component dominates the whole 
traffic behavior, so the period behavior is hidden in Figure 2. 
Figure 4 shows the ACF(i) of traffic time-series that removes B(t) 
and A(t) components. Because the period component dominates 
the rest traffic behavior, so in Figure 4 the 7 days period of 
time-series is obvious.  
Figure 5 shows the auto-correlation function curve including the 
trend item and period item, and the mutation item is removed. In 
fig5, the ACF shows the lag character. When lag is increasing, 
ACF tends to 0, the behavior is fit of AP(p) model. So the ACF 
shows that the decomposed model is very rational. 



 

Fig4: CERNET period and random
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Fig5 CERNET traffic random item
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4 Comparison with ARIMA Seasonal Model 
CERNET01 and NSFNET traces are compared with their 
forecasting result error, which is defined as equation (22). 
CERNET02 trace is compared with the simulated result SSN, 
which is defined as equation (23). 
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Where n is the time-series length of the model, r is forecasting 
length. n of CERNET01 trace is 240, and r is 24. In NSFNET trace, 
n is equal to 253, and r is 52. 
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Where SSD(m) is the auto-correlation sample variance of model m, 
and ACFm(i) is the ith order auto-correlation function of model m, 
ACFs(i) is the ith order auto-correlation function of measuring 
sample series. The statistical metrics reflects the auto-correlation 
of the model, the less the value, the better the effect. 
 The ARIMA seasonal models of three kind traces are as 
following. 
The first forecasting model of CERNET01 trace is ARIMA(2, 0, 2) 
×(0, 1, 0) 24, and its parameters are  (β1, β2,θ1, β2) ＝ (0.1652, 
-0.676, 0.8705, -1294). 
The second forecasting model of NSFNET t race is ARIMA(2, 2, 
1)×(2, 2, 0) 52, and its parameters are (β1,β2, θ1, β3, β4) = 
(-0.176822, -0.000685, 0.993894, -0.273511, 0.653531). 

The simulated model of CERNET02 trace is ARIMA(7, 0, 0)×(0, 
1, 0) 7, its parameters are (β1, β2, …, β7) ＝ (0.6606, 0.1631, 
-0.0805, -0.1232, -0.0085, 0.1721, -0.2153). 
Figure 6 is the ACF of both CERNET02 decomposed simulating 
model and CERNET02 trace, and Figure 7 is the comparison 
between the ARIMA seasonal model and the CERNET02 trace. 
Figure 6 and Figure 7 show that the precision of the compounded 
model is better than the ARIMA seasonal model.  

figure 6 the ACF both trace and
compounded model
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 Table2 is the SSD of the decomposed models of CERNET02 
trace, and table 3 is the forecasting error statistics of CERNET 01 
trace and NSFNET trace. From table 2 and table 3, we can know 
that the decomposed model suggested in the paper is very 
effective. 

Table2 SSD of two models  
Model SSD 
Decomposed model 0.000984 
ARIMA seasonal model 0.005471 
 

Table 3 error of two models 
model cernet01 error nsfnet error 
Compounded model 6.81 209.31 
ARIMA seasonal 
model 

10.26 421.92 

5  Conclusion 
In the paper, a decomposed model of long time-scale network 
traffic in a large-scale network is suggested and verified with two 



 

groups of CERNET traffic traces and one group of NSFNET trace. 
The analysis shows that CERNET user behavior has the 
periodicity of hour, day, and week. The experiment result proved 
that the prediction precision of the decomposed model is better 
than the ARIMA seasonal model’s.  
The decomposed model has three main advantages. Firstly, the 
decomposed model uses multi-types sub-models to describe traffic 
behavior, and has more parameters, so it can describe traffic 
behavior more accurately and perfectly than the traditional 
ARIMA model. Secondly, the decomposed model is composed of 
four sub-models that can describe different aspects of the traffic 
character. Finally, according to the measured traffic behavior, one 
or multi sub-model can replaced by others sub-model. For 
example, in order to research self-similar traffic behavior, the 
random item sub-model can be replaced by FARIMA model or 
FGN model. 
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