
Detecting Machine Generated Domain Names Based on Morpheme Features

ZHANG Wei-wei GONG Jian LIU Qian
College of Computer Science and Engineering

Southeast University
NanJing, China

{wwzhang, jgong, qliu}@njnet.edu.cn

Abstract—To detect machine generated domain names, we
proposed a method to exclude human generated domain names
by analyzing the basic morphemes in the character strings of
domain names (The basic morphemes in English are word
roots and affixes while in Chinese are initials and finals).
Experimental results show that the analysis of the morphemes
can make a great progress in the efficiency and accuracy of
detection.

Keywords-DNS; domain name; morpheme; word root; word affix

I. INTRODUCTION
As an important infrastructure of the internet, DNS is

primarily responsible for name resolution (mutual mappings
between domain names and IP addresses), and closely
associated with various network applications. So a new
research trend in the field of network security is based on
DNS activities to detect the malicious services, such as
botnets, phishing sites, malicious software downloads.

Currently, the main defense has been the blacklist-based
detection method. Due to the inherent defects of the
maintenance and updating of the blacklist, attackers often
algorithmically generate a long list of domain names. Recent
botnets such as Conficker, Kraken and Torpig have brought
in “DNS domain-fluxing” technique that bots algorithmically
generate a large number of random domain names and
request name resolutions. Spammers also randomly generate
domain names in their spam emails to evade the blacklist-
based detection.

To detect machine generated domain names, the main
strategy is using machine learning to analyze the statistical
lexical features in the character strings (length of domain
name, character distribution, number of special characters,
etc.). Related works can be traced back to 2007, Jan Goebel
detects the Botnet IRC command and control channel by
checking the specific key words and digital sequences in
their IRC nicknames [1]; Ma (2009) detects phishing sites
and malicious URLs in the e-mail advertising based on the
statistics of lexical features (length of the domain names,
host names, number of dots in the URL, etc.) [2]. Sandeep
Yadav (2012) detects the automatically generated domain
names by looking at distribution of alphanumeric characters
as well as bigrams in all domain names that are mapped to
the same set of IP-addresses [7]; Fariba Haddadi(2013), with
the improved SBB neural network algorithm, alleviates the
previous dependence of machine learning on prior
knowledge [8]. Moreover, since 2009, Sanjeet, Pawan and

Samuel have introduced the word segment techniques in the
field of natural language to extract and restructure keywords
from domain names for DNS probing and proactive forecast
of blacklist [4-6].

Among the detection methods mentioned above, the
machine learning method based on the statistical lexical
features has lower computational complexity, but the
attacker can easily evade detection through the prior feature
statistics. Though the word segment methods can improve
detection accuracy with the analysis on the semantic level,
the conditions are too harsh that requiring domain names are
generated entirely based on the dictionary. Taking
advantages and disadvantages of both kinds of methods into
account, we proposed a new method. Based on the basic
lexical features, with further analyzing the basic morphemes
in character strings to exclude human generated domain
names, we can effectively improve the accuracy of machine
generated domain detection. Moreover, compared with the
huge corpus in the natural language model, the number of
morphemes is relatively small (the number of word roots
commonly used in English is only 900, and the total of
initials and finals in Chinese spelling is only 47), which can
guarantee a lower system overhead.

II. MOTIVATION
Detecting machine generated domain names is

inherently a binary classification problem, which means
determining a domain name is machine generated or human
generated. Detection method can be roughly divided into
two categories: 1) directly detecting by looking for the
unique features which differ the machine generated domain
names from the human generated domain names; 2)
indirectly detecting by excluding the human generated
domain names. Regardless of the detection method, the key
problem is to find the features which can distinguish
machine generated domain names from human generated
domain names.

Considering in the progress of generating a domain
name, both of them first need to select out a specified
number of characters from a particular character set, then
compose characters into labels with some certain rules, and
finally combine with a selected suffix (top level domain).
Due to the different motivation when generating domain
names, there are some differences in the choice of character
set, the length of domain name and the combination rule of
characters, as shown in Table I.

TABLE I. FEATURES DESCRIPTION OF MACHINE / HUMAN
GENERATED DOMAIN NAME

 Character
Set

Length of
Domain Name

Combination Rule
of Characters [3,7]

Human
Generated [0-9][a-z]-_

length of domain
name / number of
labels / maximum
length of label are
all relative smaller

Containing English
words or look like
English (well-formed
and pronounceable
strings)

Machine
Generated

[0-9][a-z]-
_, and
special
characters
(i.e. <>=)

length of domain
name / number of
labels / maximum
length of label are
all relative larger

No meaningful or
pronounceable
character strings

DNS first appeared mainly because it was difficult to

remember and use the IP addresses. Thus the domain name
was introduced for convenience and popular promotion, so
human generated domain names are usually “simple”,
“pronounceable” and “easy to remember”. However,
machine generated domain names are often used by
attackers in their malicious activities. To evade detection,
the attackers often automatically generate “bulks” of
“random” domain names.

According to traditional method based on machine
learning, statistical lexical features include: length of
domain name, distribution of alphanumeric characters,
number of special characters, and so on. All these features
are exterior features of domain names, which neglect the
inherent features, so it is easy to evade detection. For
example, intelligent machines can obtain these statistical
lexical features of human generated domain names in
advance, and then use them to automatically generate
domain names, which can effectively evade the majority of
the existing detection methods. Therefore, the key to solve
the problem is to obtain the inherent features of domain
names.

The inherent features of human generated domain names
are the combination rules between the characters, which
generally obey the natural language rules. For example,
people in Europe and America often use English words to
construct domain names, while the Chinese often use
Chinese Spelling. The basic units of English are “word
roots” and “word affixes (prefix/suffix)”. Compared with
millions of English words, there are only 900 common
“word roots” and less than 500 “word affixes”. Similarly
basic morphemes in Chinese Spelling consist of 23 “initials”
and 24 “finals”. These basic morphemes constitute the
inherent features of domain name character strings. Through
computing morpheme features, such as “whether the
character string contains morphemes”, “the number of
morphemes contained”, “whether the morphemes can be
further connected to form a word”, we can exclude the
human generated domain names, and indirectly detect the
machine generated domain names.

III. DETECTION METHOD
The detection algorithm proposed in this paper consists

of three parts: First, we propose a way to group together
domain names. Then, for each such group, we compute a set

TABLE II. METRICS SET

Metric Description
m1 average length of domain names
m2 average number of labels in domain names
m3 average max length of label in domain names
m4 average ratio which digitals occupies in domain names
m5 average ratio which letters occupies in domain names
m6 average number of special characters in domain names
m7 average number of tokens in domain names
m8 average length of tokens in domain names

m9 average ratio which meaningful tokens occupies in domain
names

of metrics to characterize their string features. Finally, based
on a supervised machine learning algorithm C4.5, we could
effectively identify each group as machine-generated or
human-named.

A. Clustering Method
In order to compute metrics, we proposed a way to

group together domain names with the same second level
label (for example, “google” is the second level label of
“www.google.com”). The idea behind is coming from the
observation that many malicious domain names have the
same second level label and even the same third level label.
Different from the second level domain names used by
Sandeep Yadav [7], we choose second level label due to the
habit of the registrant that they usually registered the same
second level labels with multiple top level domain names.

B. Metrics
As shown in Table II, the first six metrics (m1-m6) are

the basic statistical lexical features (detail introduction can
be seen in literature [1-3, 7, 8]). And the last three new
metrics (m7-m9) are used to characterize the inherent
features of human generated domain names. Token here
refers to a meaningful string, such as a single morpheme, or
a multiple adjacent morpheme group (prefix + root + suffix
in English, initial + final in Chinese spelling), or a letter
abbreviation.

Before compute these three new metrics, we proposed
two heuristic methods to find out all morphemes contained
in the domain names: 1) Start from the first letter of the
character string, and try to find the longest possible token
each time; If not found, continue to repeat the previous
search progress from the second letter; Otherwise, continue
to repeat the previous search progress from the letter follows
close behind the longest token; Keep on searching until
finding all the tokens; 2) First by travelling each letter of the
entire character string, find out the longest token; Then use
recursive algorithm on both sides to keep up looking for the
longest token of the remaining strings; Recursively execute
until finding all the tokens. The first heuristic algorithm
follows the naming convention of most people and searches
tokens from left to right, while the second heuristic
algorithm is the supplementary to the first one. We
performed both algorithms, and found out the best result
(larger result of formula 1). After finding out all tokens, we
could compute metric m7-m9 according to formula 2-4.

_

max(_ , _)1 2
_ _

max(_ _ , _ _)1 2

token numiei token num token num

token sum leni
token sum len token sum len

= +

 (1)

| () |

7
| |

id D
i

i

Tokens d
m

D
∈=
∑

 (2)

()
()

| () |
8

| |
i

t Tokens d

d D
i

i

len t

Tokens d
m

D

∈

∈=

∑
∑

 (3)

()
()

_ ()
9

| |
i

t Tokens d

d D
i

i

len t

letter num d
m

D

∈

∈=

∑
∑

 (4)

Among the above formulas, token_numi represents the

number of tokens found by the ith algorithm,
token_sum_leni represents the total length of all the tokens
found by the ith algorithm, Di represents the ith domain set,
Tokens(d) represents all tokens found out in domain name d,
len(t) represents the length of token t, letter_num(d)
represents the number of letters in domain name d.

C. Classification Algorithm
Since the decision tree classification algorithm provides

accurate classification results [9], we selected supervised
machine learning methods C4.5 to classify each group as
machine-generated or human-named.

IV. ALGORITHM EVALUATION

A. Dataset
We first describe data sets and how we obtained them:
• JS_Domain_Set: The domain names which can be

correctly resolved in DNS response packets were
collected from an access point on the Jiangsu
Province boundary of CERNET from April 18 to 30
in 2013.

• Human_Domain_Set: Since the more popular the
domain name, the higher probability of generated by
human, we chose top 1000 domains in Alex list [10]
without those once appeared in the blacklist [11-16].
Considering Alex only offers second-level domain,
we further chose FQDNs (fully qualified domain
names) from JS_Domain_Set which have the same
“second-level domain name” with above.

• Machine_Domain_Set ： The domain names that
once appeared in the blacklist [11-16] constitute this
sample set.

TABLE III. DATASET

Dataset Number of Second
Level Labels

Number of Second Level
Labels which have more

than 20 sub Domains
T1 H1:380; M1:750 H1:155; M1:152
T2 H2:380; M2:751 H2:155; M2:151

JS_Domain_Set 873121 7140

TABLE IV. COMPARISON OF DETECTION RESULTS BETWEEN A1 & A2

Detecting
Method

T1 as a test set
T2 as a sample set

T1 as a sample set
T2 as a test set

A1
Accuracy: 80.13%
False Negative: 8.47%
False Positive: 11.40%

Accuracy: 79.74%
False Negative: 10.13%
False Positive: 10.13%

A2
Accuracy: 47.89%
False Negative: 5.86%
False Positive: 46.25%

Accuracy: 58.17%
False Negative: 3.92 %
False Positive: 37.91%

In order to facilitate the access of C4.5 algorithm

standard sample sets and the comparison between the
subsequent results, we randomly halve each domain name
sets of (ii)(iii) into H1, H2, M1, M2, and then exchange
them to recompose into two standard datasets (T1: H1-M1,
T2:H2-M2). T1 and T2 could be mutual training sample set
and test data set, as shown in Table III.

For the detection of machine generated domain names,
Sandeep Yadav proved by experiments that “bigrams
distribution” is better than traditional statistical lexical
features, such as “length of domain name”, “number of
numeric/alpha/dot/special characters” [7]. Since our method
is also based on the traditional statistical lexical features, to
prove the effectiveness of morpheme features, we chose
“bigrams distribution” as a comparison which directly
classifies machine generated domain names by calculating
the KL distance mentioned in [7].

B. Results
For the convenience of description, A1 represents the

detection based on morpheme features in this paper, and A2
represents the detection based on the distribution of bigrams
in [7]. Both of them take T1 and T2 as samples in turn, and
the other one as a test dataset.

As shown in Table IV, A1 is much better than A2 in the
detection accuracy rate and false positive rate. Further
analyze the reason that our method has relatively high false
positive and false negative is as follows.

The large website, like “58.com.cn”, contains 7000 sub
domains. A lot of subordinates name arbitrarily, which
shows similar features of machine generated domain names,
and results in false positive.

As shown in Fig. 1, the core thought of our detection
method is that human will follow the language rules when
he generates a domain name. The trick of repeating words
and suffixes of domain names back and forth is a blind spot
of our detection method, so we need to further improve the
algorithm.

app:ds:effectiveness

Figure 1. A Case of False Negative

Figure 2. Domain Name Examples Detected only by A1

Further apply the A1 and A2 algorithm to the actual

measured dataset JS_Domain_Set. This paper mainly
analyzes the domain names that can be detected by A1, but
cannot detect by A2. As shown in Fig. 2, for the detection of
such random strings, A1 has higher detection efficiency.

Above all, the morphemes contained in domain names
can be effectively used in detecting machine generated
domain names, which has higher accuracy than traditional
statistical method. Moreover, this method has inherent
advantages in the detection of random character strings.

V. CONCLUSIONS
In order to effectively intercept attacker algorithmically

generating a long list of domain names, statistical lexical
features cannot meet the real needs due to its poor efficiency
and higher false positives and false negatives. Moreover,
intelligent machines could obtain these statistical lexical
features prior, and generate names with the same statistical
lexical features of human generated domain names. So we
proposed a new method to exclude human generated domain
names by analyzing the inherent morpheme features in the
character strings. Experimental results show that our method
has a higher accuracy rate and a lower false positive than the
statistical method based on bigrams distribution. Moreover,
our method has an inherent advantage in the detection of
random character strings.

Our method mainly focuses on the letter sequences in
the domain names, while the inherent characteristics of the
digital sequences need further studying in the next stage.
Finally, as to domain names generated entirely based on the
dictionary, the algorithm needs to make a further

improvement with some heuristics, such as repetitive
morphemes detection. Nevertheless, morpheme features
analysis still has a broad prospect.

REFERENCES
[1] Jan Goebel, Thorsten Holz, “Rishi: Identify Bot Contaminated Hosts

by IRC Nickname Evaluation,” HotBots’07: Proceedings of the first
conference on First Workshop on Hot Topics in Understanding
Botnets, April 2007.

[2] S. S. J. Ma, L.K. Saul and G. Voelker, “Beyond Blacklists: Learning
to Detect Malicious Web Sites from Suspicious URLs,” Proc. of
ACM KDD, July 2009.

[3] Y. He, Z. Zhong, S. Krasser and Y. Tang, "Mining DNS for
Malicious Domain Registrations," Proc. CollaborateCom, pp.1-6,
2010.

[4] Sanjeet Khaitan, Arumay Das, Sandeep Gain and Adithi Sampath,
“Data-driven Compound Splitting Method for English Compounds in
Domain Names,” CIKM '09 Proceedings of the 18th ACM conference
on Information and knowledge management, pp. 207-214, 2009.

[5] Pawan Prakash, Manish Kumar, Ramana Rao Kompella and Minaxi
Gupta, “PhishNet: Predictive Blacklisting to Detect Phishing
Attacks,” INFOCOM'10: Proceedings of the 29th conference on
Information communications, March 2010.

[6] Samuel Marchal, Cynthia Wagner and Thomas Engel, “Semantic
Exploration of DNS,” NETWORKING 2012 Lecture Notes in
Computer Science Volume 7289, pp. 370-384, 2012.

[7] Sandeep Yadav, Ashwath Kumar Krishna Reddy, A. L. Narasimha
Reddy, Supranamaya Ranjan, “Detecting Algorithmically Generated
Domain-Flux Attacks with DNS Traffic Analysis,” IEEE/ACM
Transactions on Networking, vol. 20, no. 5, October 2012.

[8] Fariba Haddadi, H. Gunes Kayacik, A. Nur Zincir-Heywood,
Malcolm I. Heywood, “Malicious Automatically Generated Domain
Name Detection Using Stateful-SBB,” EvoApplications'13
Proceedings of the 16th European conference on Applications of
Evolutionary Computation, pp. 529-539, 2013.

[9] J.R. Quinlan, “Learning with Continuous Classes,” Proceedings of the
5th Australian joint Conference on Artificial Intelligence, Singapore:
World Scientific, pp. 343 –348, 1995.

[10] Alexa, http://www.alexa.com/topsites
[11] PhishTank, http://www.phishtank.com
[12] DNS-Black-Hole, http://www.malwaredomains.com
[13] Malware Domain List, http://www.malwaredomainlist.com
[14] Abuse: AMaDA, https://palevotracker.abuse.ch/
[15] Abuse: Zeus Tracker, https://zeustracker.abuse.ch/
[16] P. Porras, H. Saidi, V. Yegneswaran, “An Analysis of Confickerd’s

Logic and Rendezvous Points,” Tech. rep., March 2009, Avaliable:
http://mtc.sri.com/Conficker/

http://www.ischool.drexel.edu/cikm2009/about/index.asp
http://link.springer.com/book/10.1007/978-3-642-30045-5
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://www.alexa.com/topsites
http://www.phishtank.com/
http://www.malwaredomains.com/
http://www.malwaredomainlist.com/
https://zeustracker.abuse.ch/

	I. Introduction
	II. MOTIVATION
	III. Detection Method
	A. Clustering Method
	B. Metrics
	C. Classification Algorithm

	IV. Algorithm Evaluation
	A. Dataset
	B. Results

	V. CONCLUSIONS
	References

