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Abstract—To detect machine generated domain names, we 
proposed a method to exclude human generated domain names 
by analyzing the basic morphemes in the character strings of 
domain names (The basic morphemes in English are word 
roots and affixes while in Chinese are initials and finals). 
Experimental results show that the analysis of the morphemes 
can make a great progress in the efficiency and accuracy of 
detection. 
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I. INTRODUCTION 
As an important infrastructure of the internet, DNS is 

primarily responsible for name resolution (mutual mappings 
between domain names and IP addresses), and closely 
associated with various network applications. So a new 
research trend in the field of network security is based on 
DNS activities to detect the malicious services, such as 
botnets, phishing sites, malicious software downloads.  

Currently, the main defense has been the blacklist-based 
detection method. Due to the inherent defects of the 
maintenance and updating of the blacklist, attackers often 
algorithmically generate a long list of domain names. Recent 
botnets such as Conficker, Kraken and Torpig have brought 
in “DNS domain-fluxing” technique that bots algorithmically 
generate a large number of random domain names and 
request name resolutions. Spammers also randomly generate 
domain names in their spam emails to evade the blacklist-
based detection. 

To detect machine generated domain names, the main 
strategy is using machine learning to analyze the statistical 
lexical features in the character strings (length of domain 
name, character distribution, number of special characters, 
etc.). Related works can be traced back to 2007, Jan Goebel 
detects the Botnet IRC command and control channel by 
checking the specific key words and digital sequences in 
their IRC nicknames [1]; Ma (2009) detects phishing sites 
and malicious URLs in the e-mail advertising based on the 
statistics of lexical features (length of the domain names, 
host names, number of dots in the URL, etc.) [2]. Sandeep 
Yadav (2012) detects the automatically generated domain 
names by looking at distribution of alphanumeric characters 
as well as bigrams in all domain names that are mapped to 
the same set of IP-addresses [7]; Fariba Haddadi(2013), with 
the improved SBB neural network algorithm, alleviates the 
previous dependence of machine learning on prior 
knowledge [8]. Moreover, since 2009, Sanjeet, Pawan and 

Samuel have introduced the word segment techniques in the 
field of natural language to extract and restructure keywords 
from domain names for DNS probing and proactive forecast 
of blacklist [4-6].  

Among the detection methods mentioned above, the 
machine learning method based on the statistical lexical 
features has lower computational complexity, but the 
attacker can easily evade detection through the prior feature 
statistics. Though the word segment methods can improve 
detection accuracy with the analysis on the semantic level, 
the conditions are too harsh that requiring domain names are 
generated entirely based on the dictionary. Taking 
advantages and disadvantages of both kinds of methods into 
account, we proposed a new method. Based on the basic 
lexical features, with further analyzing the basic morphemes 
in character strings to exclude human generated domain 
names, we can effectively improve the accuracy of machine 
generated domain detection. Moreover, compared with the 
huge corpus in the natural language model, the number of 
morphemes is relatively small (the number of word roots 
commonly used in English is only 900, and the total of 
initials and finals in Chinese spelling is only 47), which can 
guarantee a lower system overhead. 

II. MOTIVATION 
Detecting machine generated domain names is 

inherently a binary classification problem, which means 
determining a domain name is machine generated or human 
generated. Detection method can be roughly divided into 
two categories: 1) directly detecting by looking for the 
unique features which differ the machine generated domain 
names from the human generated domain names; 2) 
indirectly detecting by excluding the human generated 
domain names. Regardless of the detection method, the key 
problem is to find the features which can distinguish 
machine generated domain names from human generated 
domain names. 

Considering in the progress of generating a domain 
name, both of them first need to select out a specified 
number of characters from a particular character set, then 
compose characters into labels with some certain rules, and 
finally combine with a selected suffix (top level domain). 
Due to the different motivation when generating domain 
names, there are some differences in the choice of character 
set, the length of domain name and the combination rule of 
characters, as shown in Table I. 



TABLE I.  FEATURES DESCRIPTION OF MACHINE / HUMAN 
GENERATED DOMAIN NAME 

 Character 
Set 

Length of 
Domain Name 

Combination Rule 
of Characters [3,7] 

Human 
Generated [0-9][a-z]-_ 

length of domain 
name / number of 
labels / maximum 
length of label are 
all relative smaller 

Containing English 
words or look like 
English (well-formed 
and pronounceable 
strings) 

Machine 
Generated 

[0-9][a-z]-
_, and  
special 
characters 
(i.e. <>=) 

length of domain 
name / number of 
labels / maximum 
length of label are 
all relative larger 

No meaningful or 
pronounceable 
character strings 

 
DNS first appeared mainly because it was difficult to 

remember and use the IP addresses. Thus the domain name 
was introduced for convenience and popular promotion, so 
human generated domain names are usually “simple”, 
“pronounceable” and “easy to remember”. However, 
machine generated domain names are often used by 
attackers in their malicious activities. To evade detection, 
the attackers often automatically generate “bulks” of 
“random” domain names. 

According to traditional method based on machine 
learning, statistical lexical features include: length of 
domain name, distribution of alphanumeric characters, 
number of special characters, and so on. All these features 
are exterior features of domain names, which neglect the 
inherent features, so it is easy to evade detection. For 
example, intelligent machines can obtain these statistical 
lexical features of human generated domain names in 
advance, and then use them to automatically generate 
domain names, which can effectively evade the majority of 
the existing detection methods. Therefore, the key to solve 
the problem is to obtain the inherent features of domain 
names. 

The inherent features of human generated domain names 
are the combination rules between the characters, which 
generally obey the natural language rules. For example, 
people in Europe and America often use English words to 
construct domain names, while the Chinese often use 
Chinese Spelling. The basic units of English are “word 
roots” and “word affixes (prefix/suffix)”. Compared with 
millions of English words, there are only 900 common 
“word roots” and less than 500 “word affixes”. Similarly 
basic morphemes in Chinese Spelling consist of 23 “initials” 
and 24 “finals”. These basic morphemes constitute the 
inherent features of domain name character strings. Through 
computing morpheme features, such as “whether the 
character string contains morphemes”, “the number of 
morphemes contained”, “whether the morphemes can be 
further connected to form a word”, we can exclude the 
human generated domain names, and indirectly detect the 
machine generated domain names. 

III. DETECTION METHOD 
The detection algorithm proposed in this paper consists 

of three parts: First, we propose a way to group together 
domain names. Then, for each such group, we compute a set  

TABLE II.  METRICS SET 

Metric Description 
m1 average length of domain names 
m2 average number of labels in domain names 
m3 average max length of label in domain names 
m4 average ratio which digitals occupies in domain names 
m5 average ratio which letters occupies in domain names 
m6 average number of special characters in domain names 
m7 average number of tokens in domain names 
m8 average length of tokens in domain names 

m9 average ratio which meaningful tokens occupies in domain 
names 

 
of metrics to characterize their string features. Finally, based 
on a supervised machine learning algorithm C4.5, we could 
effectively identify each group as machine-generated or 
human-named. 

A. Clustering Method 
In order to compute metrics, we proposed a way to 

group together domain names with the same second level 
label (for example, “google” is the second level label of 
“www.google.com”). The idea behind is coming from the 
observation that many malicious domain names have the 
same second level label and even the same third level label. 
Different from the second level domain names used by 
Sandeep Yadav [7], we choose second level label due to the 
habit of the registrant that they usually registered the same 
second level labels with multiple top level domain names. 

B. Metrics 
As shown in Table II, the first six metrics (m1-m6) are 

the basic statistical lexical features (detail introduction can 
be seen in literature [1-3, 7, 8]). And the last three new 
metrics (m7-m9) are used to characterize the inherent 
features of human generated domain names. Token here 
refers to a meaningful string, such as a single morpheme, or 
a multiple adjacent morpheme group (prefix + root + suffix 
in English, initial + final in Chinese spelling), or a letter 
abbreviation. 

Before compute these three new metrics, we proposed 
two heuristic methods to find out all morphemes contained 
in the domain names: 1) Start from the first letter of the 
character string, and try to find the longest possible token 
each time; If not found, continue to repeat the previous 
search progress from the second letter; Otherwise, continue 
to repeat the previous search progress from the letter follows 
close behind the longest token; Keep on searching until 
finding all the tokens; 2) First by travelling each letter of the 
entire character string, find out the longest token; Then use 
recursive algorithm on both sides to keep up looking for the 
longest token of the remaining strings; Recursively execute 
until finding all the tokens. The first heuristic algorithm 
follows the naming convention of most people and searches 
tokens from left to right, while the second heuristic 
algorithm is the supplementary to the first one. We 
performed both algorithms, and found out the best result 
(larger result of formula 1). After finding out all tokens, we 
could compute metric m7-m9 according to formula 2-4. 
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Among the above formulas, token_numi represents the 

number of tokens found by the ith algorithm, 
token_sum_leni represents the total length of all the tokens 
found by the ith algorithm, Di represents the ith domain set, 
Tokens(d) represents all tokens found out in domain name d, 
len(t) represents the length of token t, letter_num(d) 
represents the number of letters in domain name d. 

C. Classification Algorithm 
Since the decision tree classification algorithm provides 

accurate classification results [9], we selected supervised 
machine learning methods C4.5 to classify each group as 
machine-generated or human-named. 

IV. ALGORITHM EVALUATION 

A. Dataset 
We first describe data sets and how we obtained them: 
• JS_Domain_Set: The domain names which can be 

correctly resolved in DNS response packets were 
collected from an access point on the Jiangsu 
Province boundary of CERNET from April 18 to 30 
in 2013. 

• Human_Domain_Set: Since the more popular the 
domain name, the higher probability of generated by 
human, we chose top 1000 domains in Alex list [10] 
without those once appeared in the blacklist [11-16]. 
Considering Alex only offers second-level domain, 
we further chose FQDNs (fully qualified domain 
names) from JS_Domain_Set which have the same 
“second-level domain name” with above. 

• Machine_Domain_Set ： The domain names that 
once appeared in the blacklist [11-16] constitute this 
sample set. 

TABLE III.  DATASET 

Dataset Number of Second 
Level Labels 

Number of Second Level 
Labels which have more 

than 20 sub Domains 
T1 H1:380; M1:750 H1:155; M1:152 
T2 H2:380; M2:751 H2:155; M2:151 

JS_Domain_Set 873121 7140 
 

TABLE IV.  COMPARISON OF DETECTION RESULTS BETWEEN A1 & A2 

Detecting 
Method 

T1 as a test set 
T2 as a sample set 

T1 as a sample set 
T2 as a test set 

A1 
Accuracy: 80.13% 
False Negative: 8.47% 
False Positive: 11.40% 

Accuracy: 79.74% 
False Negative: 10.13% 
False Positive: 10.13% 

A2 
Accuracy: 47.89% 
False Negative: 5.86% 
False Positive: 46.25% 

Accuracy: 58.17% 
False Negative: 3.92 % 
False Positive: 37.91% 

 
In order to facilitate the access of C4.5 algorithm 

standard sample sets and the comparison between the 
subsequent results, we randomly halve each domain name 
sets of (ii)(iii) into H1, H2, M1, M2, and then exchange 
them to recompose into two standard datasets (T1: H1-M1, 
T2:H2-M2). T1 and T2 could be mutual training sample set 
and test data set, as shown in Table III. 

For the detection of machine generated domain names, 
Sandeep Yadav proved by experiments that “bigrams 
distribution” is better than traditional statistical lexical 
features, such as “length of domain name”, “number of 
numeric/alpha/dot/special characters” [7]. Since our method 
is also based on the traditional statistical lexical features, to 
prove the effectiveness of morpheme features, we chose 
“bigrams distribution” as a comparison which directly 
classifies machine generated domain names by calculating 
the KL distance mentioned in [7]. 

B. Results 
For the convenience of description, A1 represents the 

detection based on morpheme features in this paper, and A2 
represents the detection based on the distribution of bigrams 
in [7]. Both of them take T1 and T2 as samples in turn, and 
the other one as a test dataset. 

As shown in Table IV, A1 is much better than A2 in the 
detection accuracy rate and false positive rate. Further 
analyze the reason that our method has relatively high false 
positive and false negative is as follows. 

The large website, like “58.com.cn”, contains 7000 sub 
domains. A lot of subordinates name arbitrarily, which 
shows similar features of machine generated domain names, 
and results in false positive. 

As shown in Fig. 1, the core thought of our detection 
method is that human will follow the language rules when 
he generates a domain name. The trick of repeating words 
and suffixes of domain names back and forth is a blind spot 
of our detection method, so we need to further improve the 
algorithm. 
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Figure 1.  A Case of False Negative 

 
Figure 2.  Domain Name Examples Detected only by A1 

 
Further apply the A1 and A2 algorithm to the actual 

measured dataset JS_Domain_Set. This paper mainly 
analyzes the domain names that can be detected by A1, but 
cannot detect by A2. As shown in Fig. 2, for the detection of 
such random strings, A1 has higher detection efficiency. 

Above all, the morphemes contained in domain names 
can be effectively used in detecting machine generated 
domain names, which has higher accuracy than traditional 
statistical method. Moreover, this method has inherent 
advantages in the detection of random character strings. 

V. CONCLUSIONS 
In order to effectively intercept attacker algorithmically 

generating a long list of domain names, statistical lexical 
features cannot meet the real needs due to its poor efficiency 
and higher false positives and false negatives. Moreover, 
intelligent machines could obtain these statistical lexical 
features prior, and generate names with the same statistical 
lexical features of human generated domain names. So we 
proposed a new method to exclude human generated domain 
names by analyzing the inherent morpheme features in the 
character strings. Experimental results show that our method 
has a higher accuracy rate and a lower false positive than the 
statistical method based on bigrams distribution. Moreover, 
our method has an inherent advantage in the detection of 
random character strings. 

Our method mainly focuses on the letter sequences in 
the domain names, while the inherent characteristics of the 
digital sequences need further studying in the next stage. 
Finally, as to domain names generated entirely based on the 
dictionary, the algorithm needs to make a further 

improvement with some heuristics, such as repetitive 
morphemes detection. Nevertheless, morpheme features 
analysis still has a broad prospect. 
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