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ABSTRACT 

The characteristic of Internet TV user behavior is quite essential for 

designers to optimize resource schedule and improve user 

experience. With the rapid development of Internet, both Internet 

TV users and STB (set top boxes) models are booming. This brings 

a large amount of behavior data which requires matching 

computing and storage resource to process. Therefore, scalable 

Internet TV user behavior analysis becomes more difficult. As a 

solution, cloud computing framework such as Hive is emerged. But 

limited by performance, it’s not an appropriate choice for 

interactive analysis or real-time data exploration. In this paper, we 

present a real-time Internet TV user behavior analysis system with 

advantages of high concurrency, low latency and good 

transportability. Firstly, we design an event capture scheme, 

consisted of agents embedded in STBs and capture server clusters, 

to capture every manipulation performed by users. Secondly, we 

develop a SQL-on-Hadoop engine with distributed transactional 

management to decrease the response time. The engine has 

excellent query performance and ability to interactively query 

various data sources in different Hadoop formats. Lastly, we 

evaluate RBAS in a commercial Internet TV platform of 16 million 

registered users. The results show that, with a 32-node cluster, the 

system can effectively process 10.2 TB of behavior data every day, 

which is about 40x faster than original Hive-based system. 

Categories and Subject Descriptors 
C.2 [Computer-Communication Network]: Miscellaneous; C.4 

[Performance of Systems]: Measurement Techniques;  

Keywords 

User behavior analysis, cloud computing, Internet TV, SQL-on-

Hadoop 

1. INTRODUCTION 
With the wide spread availability of broadband and development of 

multimedia technology, ISP (Internet Service Providers) 

cooperates with TV stations to offer Internet TV service. Compared 

with traditional broadcast TV service, Internet TV is more flexible 

and abundance. Besides, it provides users with interactive and 

personalized watching experience. As a result, by the end of the 

fourth quarter in 2014, the number of global IPTV subscribers 

reached 117.39 million, of which 39 million are in China. 

Nevertheless, in order to guarantee user experience, Internet TV 

consumes large quantities of network bandwidth leading to network 

congestion and high latency. By analyzing behavior data, ISP is 

able to know the user access pattern, optimize the resource schedule, 

and achieve a better user experience with minimum overhead. 

The current study of Internet TV user behavior is still in its early 

stage. Both measuring methods and research results have a certain 

degree of limitation. Stem from commercial consideration, the 

source code and communication protocols of ISP Internet TV 

system remain in private. Moreover, in order to avoid interference 

from measurement, the communication between video server and 

client is encrypted, which makes the user behavior analytics 

extremely difficult. Therefore, it’s quite necessary to involve ISP 

in measurement work to improve the coverage ratio and precision 

ratio. In this paper, cooperating with an Internet TV service 

provider, we present a real-time massive Internet TV user behavior 

data analytic system. The main contribution of our work is as 

follows: 

 (1) This work presents an Internet TV user behavior events capture 

scheme, which provides a good transportability as well as high 

throughput performance. It is consisted of event agents embedded 

in STBs and capture servers carefully organized as clusters. The 

agents encapsulate every user operation into UDP packets, and can 

be deployed on all kinds of STBs that are conformed to the standard 

of the next generation broadcasting network television operating 
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system (NGB TVOS) [1]. According to experiments results, the 

events capture system is able to handle 25 million packets of events 

sent by millions of STBs per minute. 

(2) In order to reduce the response time of the analysis process, we 

develop a SQL-on-Hadoop engine, which can be flexibly scaled to 

support large numbers of concurrent short operational updates 

along with long running operational reporting queries. We 

implemented a distributed transaction management infrastructure 

that can facilitate transactional updates spanning multiple rows, 

tables, and statements across both structure data in relational tables, 

as well as semi-structure data in HBase tables. 

The paper is organized as follows. In section2, we describe the 

related work on Internet TV measurement and analysis. The 

architecture of Real-Time User Behavior Analysis System for 

Internet TV is explained in section 3, and experiment results are 

presented in section 4. Finally, section 5 concludes this paper.  

2. RELATED WORK 
According to the observation agent whether to participate in the 

Internet TV system, measurement methods can be divided into 

active and passive measurement. Active measurement is based on 

the crawlers to obtain system topology snapshot and node 

information. Crawlers must be complete or partial implemented 

communication protocol of the measured system. Researchers 

usually use reverse engineering methods to obtain enough 

information about system protocol and topology which is essential 

to build the crawlers. Hei et al. [2] use active measurement methods 

to study user behavior of PPLive, including online user number in 

a particular channel, the variation of online user number and 

dynamic of users. Vu et al. [3,4] implement a protocol crawler of 

PPLive and found that the number of online users in particular 

channel presents characteristics like time-sensitive, self-repeated 

and event-dependent. Jiang et al. [5] develop and deploy a P2P 

IPTV crawler supporting multiprotocol, present a large 

measurement study of user behavior and network topology in 

PPLive, PPStream and UUsee. Active measurement is suited for a 

particular Internet TV system and lack of generality. In addition, 

traffic caused by crawlers influences the original appearance of user 

behavior, which is interference with measurement results. 

There are two kinds of passive measurement methods: one is to set 

observation host to record and analyze information of the Internet 

TV system. The other is to deploy log servers to collect user 

behavior information. Hall et al. [6] analyze the video traffic data 

collected from Joost clients and present features of VOD (video on 

demand) system, overlay network topology and user behaviors. 

Huang et al. [7] deploy log servers in PPLive to collect view records 

including when and where users watch movies, precisely describe 

the access pattern and online time. Yu et al. [8] analyze the 

watching behavior, the arrival and departure pattern, content access 

mode of China Telecom VOD system and come to the conclusion 

that the user access pattern is predicable. Based on log information 

of Imagenio IPTV system, Cha et al. [9] analyze the characteristics 

of view sessions and channel popularity. In contrast to active 

measurement, passive measurement method is system-independent, 

which can be used in varied situations, and makes a few bad effects 

on the measured system. However, perspectives of passive 

measurement are limited and the result is incomplete. 

Under the restrictions of computing framework, it’s difficult to 

process massive user behavior data in real-time for traditional 

measurement method mentioned above. The emergence of cloud 

computing framework, represented by the Hadoop and Hive [10], 

effectively solves the problem of storage and computing for big 

data. Ding et al. [11] adopt Hadoop and HBase to store large-scale 

network measurement data. Lee et al. [12] design a Hadoop-based 

traffic monitoring system that performs IP, TCP, HTTP, and 

NetFlow analysis of multi-terabytes of Internet traffic in a scalable 

manner. Liu et al. [13] implement a traffic monitoring and analysis 

system for large-scale network based on Hadoop and deploy it in 

the core network of a large cellular network. However, due to batch 

job framework, all those works are not suitable for interactive 

analytics which is the key to promote behavior data exploration and 

rapid user prototyping.  

Recently there has been increasing interests in building real-time 

query processing tools that answer queries directly, without 

invoking MapReduce. Cloudera Impala [14] processes SQL queries 

over data stored in HDFS, the file system of Hadoop, and/or in 

HBase. Spark SQL [15] is the online query processing module built 

on top of Spark [16], a novel in-memory big data processing 

platform. Both Impala and Spark SQL are lack of transaction 

capability, which makes analysis program is quite error prone. 

Therefore, we need to develop a SQL-on-Hadoop engine with 

distributed transaction management, which can be flexibly scale to 

support large numbers of concurrent short operational updates 

along with long running operational reporting queries. 

3. SYSTEM OVERVIEW  
RBAS includes an STB events capturer, a distributed data storage 

and an interactive analysis engine. The overview of RBAS 

architecture is described as figure 1.  
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Figure 1. Overview of RBAS architecture 

(1) STB events capturer. When users manipulate STB, agents 

embedded in STB capture the interrupts of TVOS, translate 

interrupts into predefined message structures, and encapsulate 

message data into UDP packets transmitting to event filtering 

modules deployed in regional management servers.  

 (2) Distributed data storage. According to the locality of STB, type 

of behavior events and timestamp, behavior data is published into 

different topics as distributed message queues, processed in 

streaming, and stored in native Hive or HBase tables using their 

native storage engines and data format. Storage provides a 

relational schema abstraction on top of HBase. Traditional 

relational database objects (schemas, tables, views, secondary 

indexes, stored procedures) are supported using familiar DDL (data 



definition language)/DML (data manipulation language) semantics 

including object naming, column definition and data types support. 

(3) Interactive analysis engine. It is comprised of a number of 

services or processes used for interactive analysis. Services include 

connection management, SQL statement compilation and 

optimized execution plan creation, SQL execution (both parallel 

and non-parallel) against database objects (tables in HBase), 

transaction management, and workload management. It provides 

transparent parallel SQL execution as warranted thereby 

eliminating the need for complex map-reduce programming 

development. 

3.1 STB Events Capturer 
STB events capturer is consisted of event agents embedded in set 

top boxes(STBs) and capture servers carefully organized as clusters. 

In order to be compatible with different STB models manufactured 

by different vendors, the agents are developed based on NGB 

TVOS which is official standard conformed by manufacturers in 

China. User behaviors are monitored by process forked by the 

agents, encapsulated into one of 30 predefined message structures 

and stored in the output buffer. To minimize the overhead of 

transmission, dozens of messages are sent in a UDP packet and the 

interval of transmission is set at 5 minutes.  

The process of capturing and filtering STB events is described in 

Figure 2. Region servers collect the packets containing behavior 

data. During the peak time, the number of packets sent per second 

usually reaches about 20,000,000 per minute. Servers are carefully 

designed into clusters to process so many packets and publish 

behavior data into the correspond topic queue. Load balancer is 

introduced to distribute packets to the server with minimum 

response time.    

Topic 0x01 PowerOn
Topic 0x02 StandBy
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Topic 0x5f CloudServInOut 

Distribute Message Queue
 (Kafka Cluster)

PushPush Push

Load Balancer Region Server1 Region Server2 Region Server n
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Figure 2. Capturing and filtering STB events  

The captured behavior data involves user access pattern, program 

popularity and view session duration, from which view habits and 

preferences can be revealed. It’s flexible to expand behavior events 

by adding new event codes. According to perspectives to measure, 

service providers can update agent program online without extra 

hardware investment. Little time delay is caused in whole capture 

process. 

3.2 Distributed Data Storage  
Internet TV measurement system usually stores data in relational 

database systems and data model are designed based on the 

relational model. The size of data depends on the scale of users and 

measurement duration. As the scale of users and measurement 

duration increases, the volume of behavior data grows 

exponentially [17].  

Considering both capacity and scalability of centralized storage is 

limited, we leverage HBase for performance, scalability and 

availability. These features are key to supporting interactive 

analysis workload with high concurrency. Fine grained load 

balancing, scalability, and parallel performance is provided via 

standard HBase services such as auto-sharding data across multiple 

regions and region servers. Data availability and recovery when a 

server or disk fails or is decommissioned is provided by standard 

Hadoop and HBase services such a replication and snapshots. 

Figure 3 describes the architecture of RBAS storage. 

Although RBAS stores database objects in HBase/HDFS storage 

structures, it differs and brings value-add over HBase in a multitude 

of ways. RBAS provides a relational schema abstraction on top of 

HBase which allows researchers to leverage known and well tested 

relational design methodologies and SQL programming skills. 

From a physical layout perspective, RBAS uses standard HBase 

storage mechanisms (column family store using key-value pairs) to 

store and access objects. RBAS stores all columns in a single 

column family to improve access efficiency and speed for 

operational data. Additionally, RBAS incorporates a column name 

encoding mechanism to save space on disk and to reduce messaging 

overhead for improving SQL performance. 
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Figure 3. RBAS storage over HBase 

Unlike HBase that treats stored data as an un-interpreted array of 

bytes, RBAS defined columns are assigned specific data types that 

are enforced by RBAS when inserting or updating its data contents. 

This greatly improves data quality and integrity. Also it eliminates 

the need to develop application logic to parse and interpret the data 

contents. HBase provides ACID (atomic, consistent, isolated and 

durable) transaction protection only at the row level. RBAS extends 

ACID protection to application defined transactions that can span 

multiple SQL statements, multiple tables, and rows. This greatly 

improves database integrity by protecting the database against 

partially completed transactions i.e. ensuring that either the whole 

transaction is completely materialized in the database or none of it. 

HBase’s native API is at a very low level and is rarely used 

programming API. In contrast, RBAS API is ANSI SQL which is 

a familiar and well known programming interface and allows 

companies to leverage existing SQL knowledge and skills. Unlike 

HBase’s key structure that is comprised of a single un-interpreted 

array of bytes, RBAS supports the common relational practice of 

allowing the primary key to be a composite key comprised of 

multiple columns. Finally, unlike HBase, RBAS supports the 

creation of secondary indexes that can be used to speed transaction 

performance when accessing row data by a column value that is not 

the row key. 

In order to support transactional workloads across structured and 

semi-structured data, RBAS has implemented a Distributed 

Transaction Management infrastructure that will facilitate 

transactional updates spanning multiple rows, tables, and 

statements across both structured data in relational tables, as well 

as semi-structured data in HBase tables. In this architecture, the 

work related to transaction management is truly distributed. 



Multiple processes that are initiating transactions talk to a local 

Transaction Manager (TM) to coordinate the transaction. The TM 

is only involved in coordinating the transaction initiation, commit, 

abort, auditing, and recovery operations. It does not keep track of 

all the transaction updates or reads against the HBase regions. 

Those are delegated to the regions. So it is very lightweight. The 

TM is multi-threaded and can be scale-up, handling as many 

transactions in parallel via threads as necessary. One can also define 

multiple logical nodes per physical nodes, each with its own TM 

process, if it is deemed to be necessary for scale-up. 

The job of managing the transaction is separated from the actual 

updates for each transaction. The Resource Manager Library is 

used by the analysis engine process to make the transactional 

versions of the get / put / delete / getScanner calls directly to the 

HBase regions involved in the transaction. That is, TM does not get 

involved in tracking these calls or the updates. The updates 

themselves are tracked in a completely distributed way as well by 

the HBase region, via a thread of the Endpoint coprocessor running 

in the region server, for the region hosting the transactional call. 

Again, the coprocessor does not communicate the updates related 

to a transaction to the TM. It talks to the TM minimally, only when 

transaction coordination activities – such as commit or abort are 

initiated. 

3.3 Interactive Analysis Engine 
Interactive analysis engine encapsulates all of the services required 

for managing database objects as well as efficiently executing 

submitted SQL database requests. Services include connection 

management, SQL statement compilation and optimized execution 

plan creation, SQL execution (both parallel and non-parallel) 

against database objects, transaction management, and workload 

management. It provides transparent parallel SQL execution as 

warranty to eliminate the need for complex map-reduce 

programming development. Figure 4 describes the query execution 

workflow. 
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Figure 4. Query execution workflow 

When the analytic requests to open a connection, RBAS’s database 

connection services (DCS) process the request and assign the 

connection to a Master SQL process. RBAS uses Zookeeper to 

coordinate and manage the distribution of connection services 

across the cluster for load-balancing purposes as well as to ensure 

that an analytic session can immediately reconnect in the event 

when the assigned master process should fail.  

The Master process is responsible for coordinating the execution of 

SQL statements passed from the analytic application. The Master 

calls upon the compiler and optimizer process (CMP) to parse, 

compile, and generate the optimized execution plan for the SQL 

statements.  

If the optimized plan calls for parallel execution, the Master divides 

the work among Executive Server Processes (ESP) to perform the 

work in parallel on behalf of the Master process. The results are 

passed back to the Master for consolidation. In some situations, 

where there a highly complex plan specified (e.g. large n-way joins 

or aggregations), multiple layers of ESPs may be requested. If a 

non-parallel plan is generated, then the Master calls upon HBase 

services directly for optimal performance.  

For distributed transaction protection services the RBAS DTM 

service is called upon to ensure the ACID (atomicity, consistency, 

isolation and durability) protection of transactions across the 

Hadoop cluster. DTM (distributed transaction management) calls 

upon RBAS supplied HBase coprocessor services that provide 

transaction resource management on behalf of HBase.  

Last, but not least, HBase, HBase coprocessors, and HDFS services 

are called upon by either the Master or ESP processes using 

standard and native API’s to complete the I/O requests i.e. 

retrieving and maintaining the database objects. Where appropriate 

RBAS will push down SQL execution into the HBase layer using 

filters or coprocessors.  

RBAS’s SQL executor uses a dataflow and scheduler-driven task 

model to execute the optimized query plan. Each operator of the 

plan is an independent task and data flows between operators 

through in-memory queues (up and down) or by inter-process 

communication. Queues between tasks allow operators to exchange 

multiple requests or result rows at a time. A scheduler coordinates 

the execution of tasks and runs whenever it has data in one of its 

input queues. RBAS’s executor model is starkly different from 

alternative SQL-on-Hadoop DBMS that store intermediate results 

on disk—for example, spool space. In most cases, the RBAS’s 

executor is able to process queries with data flowing entirely 

through memory, providing superior performance and reduced 

dependency on disk space and I/O bandwidth. The executor 

incorporates 3 types of parallelism: 

(1) Partitioned parallelism which is the ability to work on multiple 

data partitions in parallel. In a partitioned parallel plan, 

multiple operators all work on the same plan. Results are 

merged by using multiple queues, or pipelines, enabling the 

preservation of the sort order of the input partitions. 

Partitioning is also called “data parallelism” because the data 

is the unit that gets partitioned into independently executable 

fractions. 

(2) Pipelined parallelism is an inherent feature of the executor 

resulting from its dataflow architecture. This architecture 

interconnects all operators by queues with the output of one 

operator being piped as input to the next operator, and so on. 

The result is that each operator works independently of any 

other operator, producing its output as soon as its input is 

available. Pipelining occurs naturally and is engaged in almost 

all query plans. 

(3) Operator parallelism is also an inherent feature of the executor 

architecture. In operator parallelism, two or more operators 

can execute simultaneously, that is, in parallel. Except for 

certain synchronization conditions, the operators execute 

independently. 

Therefore, RBAS naturally provides parallelism without special 

processing such as Hadoop map-reduce programming or coding on 

the part of the application client. An individual query plan produced 

by the optimizer can contain any combination of partitioned, 



pipelined, or operator parallelism. The degree of parallelism at any 

plan stage may vary depending on the optimizer’s heuristics. 

4. EXPERIMENTS 
We deploy RBAS in a commercial Internet TV platform of 16 

million registered users. All the systems are deployed on a 32-node 

cluster connected by two 48-port 10 GigE switches, of which 30 

nodes are used for Data Nodes, and 2 nodes are used for 

management nodes. Each node has two 2.93GHz Intel Xeon 6-

coreprocessors, and runs 64-bits CentOS 6.3 with 2.6.23 kernel. 

And it has 256GB memory, 2 900GB SAS hard disks, 5 600GB 

SSD hard disks and one Intel X520 Dual-Port 10 GigE NIC. Table 

1 show the overall workload and performance in this environment. 

Table 1. Overview of workload and performance 

Metric Value 

Link speed 32*10G 

Total number of registered user 16 million 

Average number of online user per day 9.5 million 

Average number of STB events packet per day 7.2 billion 

Size of HDFS files per day 10.2 Tbytes 

Average CPU utility of analysis server 40.6% 

Average Mem utility of analysis server 67.1% 

 

We run a behavior analysis style benchmark consisting of a subset 

of the queries on a 250TB queries data set. Based on the amount of 

data, queries are categorized into interactive, reporting and deep 

analytic queries. For our comparisons, we used the most popular 

SQL-on-Hadoop systems, such as Impala, SparkSQL and Hive, to 

show results.  

4.1 Single-User and Multi-User Performance 
Figure 5(a) compares the performance of the four systems on 

single-user runs, where a single user is repeatedly submitting 

queries with zero think time. RBAS outperforms all alternatives on 

single-user workloads across all queries run.  Its performance 

advantage ranges from 2.1x to 13.0x and on average is 6.7x faster. 

RBAS superior performance becomes more pronounced in multi-

user workloads, which are ubiquitous in real-time behavior analytic 

applications. Figure 5(b) shows the response time of the four 

systems when there are 100 concurrent users submitting queries 

from the interactive category. In this scenario, RBAS outperforms 

the other systems from 6.7x to 18.7x when going from a single user 

to concurrent user workloads. The speed varies from 10.6x to 27.4x 

depending on the comparison.  

 

Figure 5. Comparison of query response times on single-user 

and multi-user 

4.2 Simple selection and Complex join queries 
Based on the complexity of their execution plans, we categorize 

behavior analytic queries into two groups: simple selection queries 

and complex join queries. 

Simple selection queries: all these queries either perform simple 

selection and aggregation against one single table, or 

straightforward join of two or three tables. Here we take 

quantitative amount of program watching time as an example. Only 

the viewrecord table is involved. The execution plan for this query 

is simple: first a sequential scan, and then a two-phase aggregation. 

Figure 6(a) shows that, for such simple queries, RBAS is 10x faster 

than Hive. There are factors contributing to this performance gap. 

Firstly, the task start-up and coordination of RBAS is more efficient 

than YARN. Secondly, data movement in RBAS is pipelining, 

while MapReduce jobs materialize the output of each stage, either 

locally or remotely on HDFS. 

Complex join queries: The common characteristics of these 

queries are that the selection and aggregation operations are run 

against several tables of various sizes, involving a join on 3 or more 

tables. These queries are too complex to be optimized manually. In 

such case, the join order and data movement efficiency have 

significant impacts on query execution performance. As illustrated 

in Figure 6(b), RBAS is 40x faster than Hive for complex join 

queries. Besides the factors discussed previously for simple 

selection queries, this huge performance gain is also closely related 

to planning algorithms. Given the table statistics, RBAS employs a 

cost-based query optimizing algorithm, which makes it capable to 

figure out an optimal plan. Hive uses a simple rule-based algorithm 

and makes little use of such hints. Thus, most of the time, Hive can 

only give a sub-optimal query plan. Furthermore, multiple table 

join introduces large volume data movement. 

 

Figure 6. Comparison of response times on simple selection 

queries and complex join queries 

4.3 Scalability  
To evaluate the scalability of RBAS, two tests are designed. The 

first one assigns 300GB data on each node, while the other has a 

total data size to 10TB and distribute the data to 32 nodes by 

distribution columns. We run the analysis queries on the cluster size 

of 8, 16, 24, and 32 nodes. It measures how well RBAS can scale 

as new nodes added in the cluster. The result of the first test is 

shown in Figure7(a), where the red lines are the actual test results, 

while the blue lines are the ideal linear expectations. When the 

cluster size scales from 8 nodes to 32 nodes, the dataset being 

processed increases from 2.4TB to 9.6TB, and the execution time 

increases slightly, approximately about 11%. This result implies 

that the size of dataset which RBAS can process is near-linearly 

increased as the size of the cluster increases.  



 

Figure 7. Scalability of RBAS as nodes increasing 

Figure 7(b) illustrates the result of the second test. The execution 

time decreases from 850 seconds to 236 seconds, about 28% of the 

former one, as the cluster size scales from 8 nodes to 32 nodes. This 

result suggests that for a fixed dataset, the execution time is near-

linearly decreased as the cluster size increases.  

5. CONCLUSIONS 
In this paper, we proposed a real-time Internet TV user behavior 

analysis system for high concurrency, low latency and good 

transportability. We designed an Internet TV user behavior events 

capture scheme, which is able to handle 25 million packets of event 

sent by millions of STBs per minute. Moreover, based on clouding 

computing platform, Hadoop, we develop a SQL-on-Hadoop 

engine with distributed transactional management, which has 

excellent query performance and can also interactively query 

various data sources in different Hadoop formats. This system has 

been deployed in a commercial Internet TV platform of 16,000,000 

registered users and extensively evaluated. The results show that, 

with a 32-node cluster, the system can effectively process 10.2 TB 

of behavior data every day, which is about 40x faster than system 

based on the original Hive. For future work, we plan to improve the 

performance of analysis programs by optimizing execution plans 

based on statistics. In addition, we also plan to extend the current 

online analytical processing oriented system to support machine 

learning algorithm by leveraging Spark streaming processing 

technologies. 
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