
China Communications • July 201531

fundamental role on system performance. Ex-
isting works on optimizing in-network caching
performance, e.g., the works in [1], [2], pri-
marily consider a network with caches friend-
ly to each other and coordinating to shoot for a
globally beneficial object placement. Howev-
er, there are scenarios where caches are selfish
and aim at only their individual benefits. For
example, future ICN is likely to be a network
of autonomous systems (AS) with caching
capability. And ASes that maintain peering
agreements with each other may also engage
in content-level peering in order to leverage
each others’ cached content to reduce their
own data access costs 1 [3], [4], [5] (as transit
traffic would be reduced). Not So Cooperative
Caching (NSCC) is emerged to handle “coop-
erative caching” among such autonomous and
selfish caches [6]. NSCC considers a network
comprised of selfish nodes; each is with cach-
ing capability and an objective of reducing its
own access cost by fetching data from its local
cache or from neighboring caches. It assumes
the access cost of retrieving data from local
cache is minimal, and that of retrieving data
from neighboring nodes is small as compared
to that of fetching the data from its original
content server. For example, fetching data
from local cache or from a neighboring cache
may reduce latency or reduce load on poten-
tially expensive upstream links. As individual

Abstract: Not So Cooperative Caching
(NSCC) considers a network comprised of
selfish nodes; each is with caching capability
and an objective of reducing its own access
cost by fetching data from its local cache or
from neighboring caches. These nodes would
cooperate in caching and share cached content
if and only if they each benefit. The challenges
are to determine what objects to cache at each
node and to implement the system in the con-
text of Information Centric Networking (ICN).
This work includes both a solution for the
NSCC problem and a design and implementa-
tion of an NSCC system in Named Data Net-
working (NDN), a large effort that exemplifies
ICN. Our design applies NDN synchronization
protocol to facilitate the information exchange
among nodes, adopts group key encryption to
control data access within the NSCC group,
and offers an error checker to detect error
events in the system. Our approach is validat-
ed by deploying the system we developed on
PlanetLab.
Keywords: named data networking; content
caching; selfish caches; synchronization;
group rekeying; error checker; game theory

I. INTRODUCTION

As a distinctive feature of Information Centric
Networking (ICN), in-network caching plays a

Design and Implementation of Not So Cooperative
Caching System
Hu Xiaoyan, gong Jian, CHeng guang, ZHAng Weiwei, Ahmad Jakalan

School of Computer Science and Engineering, Southeast University, Nanjing, China
Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education
Email: {xyhu, jgong, gcheng, wwzhang, ahmad}@njnet.edu.cn

1 Note that data ac-
cess cost is abstract
here. It can be capi-
tal expenditure, but
it can also be other
metrics such as data
access delay.

INFORMATION-CENTRIC NETWORKING

China Communications • July 2015 32

ion supplementary work as compared to that
in [7]: i) the extension of the synchronizer that
adds distributed group key management (Sec-
tion III-B), ii) the extension of the local cache
that adds data encryption (Section III-D), iii)
an extra error checker that timely detects error
events (Section III-E), iv) an extra analysis and
discussion of the NSCC system (Section IV), v)
a more comprehensive evaluation that measures
the communication overhead in synchronizing
information among group members and the im-
pact of error events on the caching performance
of the enhanced NSCC system (Section V).

II. PROBLEM FORMULATION OF NSCC

We formally define the NSCC problem [6] as
follows. We are given a set of n selfish cach-
ing nodes forming a “NSCC group”, and a set
of m unit-sized objects. The access pattern of
node i is described by a vector ri = {ri1, ···, rik,
···, rim} where rik is the rate at which node i
requests object k.

Each node aims to minimize its own access
cost. When node i accesses an object, the cost
depends on the object’s location. Let di,j denote
the cost for node i to access an object cached
at node j, di,i denote the cost to fetch an object
from its local cache and di,n+1 denote the cost
for node i to fetch an object from original data
sources. We assume ∀i,j, di,i<di,j=dj,i<di,n+1,
i.e., when a node accesses objects, local cache
is preferred over other caches which are pre-
ferred over original data sources. The above
definition of d is referred to as our access
“price” model.

The cost of a node depends on where ob-
jects are placed and its access pattern. Due to
cache space limitation, each node can cache
only some objects locally and must decide
which objects to place in its cache. Let Si
denote the cache size at node i (Si<m) and
Pi denote the set of objects cached at node i.
Similarly, all other nodes decide which objects
to place in their caches. The result is a global
object placement P = {P1, P2, ···, Pn}. Then
the cost of node i	depends on the placement P.
Let Ci(P) denote the cost of node i under ob-

nodes in NSCC are selfish and rational, they
would choose to cooperate in making caching
decisions and share cached content if and only
if they each benefit from the system, which is
the minimum participation requirement. The
challenges are to determine what objects to
cache at each node so as to satisfy the mini-
mum participation requirement (resulting in
a guaranteed global object placement) and to
implement the system in an ICN way.

The previous work in [6] focuses on how
to find a guaranteed global object placement
in a game-theoretical way. And the work in
[7] provides a basic implementation design
of NSCC in NDN (Named Data Network), a
large effort that exemplifies ICN. The basic
implementation uses a four component design
and a preliminary evaluation of the NSCC
system is offered. As selfish and rational cach-
es, NSCC nodes would like to share cached
content with only the NSCC group members
who contribute to the group so as to avoid the
process of Interests from non-members. And
thus there should be certain access control
over the cached content acting as a disincen-
tive for non-members to send Interests to the
group to get rid of free-riders. Moreover, these
selfish caches may unintentionally fail due to
hardware or software or overload problems
or unstable physical network connections, or
intentionally refuse to answer some or all the
requests from other members for data they
commit to host to gain individual advantages
at the cost of others (i.e., node cheating). And
therefore, there should be some error checker
mechanism to detect such error events.

For the data access control and error check-
er, the NSCC system introduced in [7] has not
investigated them yet. In the present study, we
elaborate on the design of the NSCC system
and enhance the design with access control
over content cached within the NSCC group
and an error checker, an extra component to
detect error events such as node failure, leav-
ing, or cheating. Besides, this paper provides
a more comprehensive evaluation of the en-
hanced NSCC system.

This paper includes the following compan-

This work includes
both a solution for the
NSCC problem and
a design and imple-
mentation of an NSCC
system in Named Data
Networking (NDN), a
large effort that exem-
plifies ICN.

China Communications • July 201533

i are sorted in descending order by their re-
quest rates and node i caches the Si most popu-
lar objects. Then each object is accessed either
from local cache or from its original source,
and the cost of node i under GL is computed
as follow:

 Ci(GL) =
∑

k≤S i

rikdi,i +
∑

k>S i

rikdi,n+1 (2)

NSCC seeks a guaranteed object placement
P such that for each node in the group, its cost
would be reduced as compared to that under
GL. And the objective is formulated as follow:

 ∀i,Ci(P) < Ci(GL) (3)
which is the participation or individual ratio-
nality constraint for each rational node.

III. THE SYSTEM DESIGN

We designed a Not So Cooperative Caching
system in NDN. Our NSCC design runs at
the application level and makes use of the
CCNx library [8]. An NSCC node is similar
to a proxy and can be deployed by any orga-
nization. An organization simply configures
routing so that the NSCC node is located on
the path from its users to the Internet and its
gateway is the best candidate to install the
NSCC application. No changes are required to
other NDN nodes or the underlying CCNx.

We offer a specific solution to the object
placement problem in Section III-C. However,
our design is independent of the object place-
ment algorithm and allows one to use different
algorithms for object placement, provided that
the nodes agree upon the placement algorithm
to be used.

In our design, each NSCC node consists
of five components as illustrated in Figure
1. Interest/Data Processor processes users’
requests for Data. Synchronizer periodically
synchronizes request rate information at dif-
ferent NSCC nodes for global object place-
ment computation and manages group key
for the system. Compute Cache computes the
global object placement at these NSCC nodes
following our game-theory approach present-
ed in [6]. Local Cache maintains Data objects
specified by the Compute Cache and encrypts

ject placement P which is computed as follow:

 Ci(P) =
∑

k∈Pi

rikdi,i +
∑

k�Pi
k∈Q−i

rikdi,l(i,k) +
∑

k�Pi
k�Q−i

rikdi,n+1 (1)

The cost of node i is the total access cost
to serve requests for all the objects. The cost
for node i to serve requests for any object k
is the product of its request rate and the cost
for node i to fetch object k which depends on
the location from which the object is fetched,
either from local cache, or from the “cheapest”
node that caches object k or from the origi-
nal source. Let Q−i=P1∪···∪Pi−1∪Pi+1···∪Pn
denote the set of objects collectively held
by nodes other than node i under the global
placement P and di,l(i,k) denote the cost for node
i to fetch object k from the “cheapest” node
l(i, k) that caches object k . More specifically,
for each request for any object k, if object k is
locally cached, it is accessed from local cache
with cost di,i; otherwise if object k is cached
at certain nodes in the NSCC group, it is ac-
cessed from the “cheapest” node l(i, k) among
these that store object k with cost di,l(i,k); oth-
erwise it is accessed from the original source
with cost di,n+1.

Instead, if nodes are operate in isolation un-
der Greedy Local policy (GL), objects at node

Fig.1 The design of an NSCC node

Synchronizer

Compute

Cache

Interest/Data

Processor

Error

Checker

Local Cache

Local request rate stats

F
eed

b
a ck

 fo
r d

ata a ccess

R
eq

u
es t rates at all aliv

e n
o
d
es

W
hat to locally cache

Error report

Interest

Group key

The global object placement

In
teres t

E
rro

r rep
o

rt

China Communications • July 2015 34

tracking local popularity. Interests from either
other NSCC nodes or from the synchronizers
begin with known common prefixes and thus
can easily be distinguished from the Interests
sent by local users. This work introduces a
space efficient method with double Count-
ing Bloom Filter (CCBF)[9], [10] to identify
popular content that may be cached later and
whose request rate information needs to be
exchanged in the synchronizer. Figure 3 il-
lustrates how to identify popular content with
CCBF. The PopularData_CBF is a CBF used
to test if a Data packet has already been fil-
tered to be popular and record the access times
of such Data. And Filter_CBF is another CBF
used to filter popular Data. When an Interest
for Data with name ID arrives, k different hash
functions are used to map ID into k different
counters and its following process is as follow:
• If the values of the k counters in Popular-

Data_CBF are all larger than 0, the Data
has already been filtered to be popular and
then update the record of its corresponding
access times.

• Otherwise, the requested Data is not yet
popular enough and is being filtering. The
values of the k counters in Filter_CBF are
increased by 1. If the values of these k
counters now are all larger than the precon-
figured threshold x -- the definition of popu-
lar content, Data ID is filtered to be popular
at this time. Then decrease the values of

such Data objects with the group key. Error
Checker detects error events in the system.
Each component is a “black box” to the others
knowing nothing about how the other compo-
nents do their jobs. These components interact
with other components, if necessary, through
their input and output interfaces.

3.1 Interest/data processor

We begin our discussion of NSCC with In-
terest/Data processor. Figure 2 illustrates the
scenario under which the Interest/Data pro-
cessor of an NSCC node works. The Interest/
Data processor must meet the following four
requirements:
• Tracking Local Popularity: the Interest/

Data processor listens to all Interests from
all local users and calculates local populari-
ty of content.

• Satisfying interests From Local users:
if an Interest is received from local users,
the Interest/Data processor returns the data
from local cache, or requests it from other
NSCC node, or fetches it from the Internet.

• Recording users’ Data Access experi-
ence: users’ data access within the NSCC
group that times out would be recorded so
that error checker can investigate what hap-
pens.

• Processing interests not From Local us-
ers: besides the Interests from local users,
other Interests may be from the synchroniz-
ers of local node and other NSCC nodes,
or from other NSCC nodes requesting data
that may be cached at this node.
To track local popularity, the NSCC node

is located on the default path from its users to
the Internet. Its Interest/Data processor installs
a route for the root name prefix pointing to
the face of the NSCC application itself at this
node. Then each Interest (except the Interests
sent from the Interest/Data processor itself)
would be forwarded to the NSCC application.
A received Interest might come from local
users, or other NSCC nodes, or from the syn-
chronizers. An NSCC node only needs to track
local content popularity and hence only the
Interests from local users would be used for Fig.2 The NSCC scenario

CCNx

user

CCNx

user

CCNx

user

CCNx

Gateway

 NSCC

 node

CCNx

Gateway

 CCNx

Gateway

China Communications • July 201535

NSCC group. The Interest/Data processor at
each NSCC node installs a route for the NSCC
common name prefix pointing to itself such
that it would receive the Interests sent from
other NSCC nodes requesting data that may be
cached at this node. Due to error events, users’
access for content covered by other NSCC
nodes may time out. Interest/Data processor
records the content names and the times of
such failed data access.

3) If the requested data is not covered by
any NSCC node, it should be fetched from the
Internet. The Interest/Data processor installs
a route for the original data name pointing to
the default gateway. When the data returns,
the Interest/Data processor simply forwards it
back to the requesters. Neither local users nor
gateway need to know NSCC also receives a
copy of the Interest.

To process Interests not from local users,
the Interest/Data processor listens for Interests
from other NSCC nodes or from the synchro-
nizers. It might receive Interests for data that it
has cached. All such Interest names must start
with the NSCC common name prefix. The
Interest/Data processor strips off the NSCC
common prefix, searches its local cache, and
returns the data with name /NSCC/group/
original name if present in the local cache or
ignores the Interest if it doesn’t have the data
or the Interest is from the synchronizers.

3.2 Synchronizer

Given the local popularity computed by the
Interest/Data processor, the synchronizer is
responsible for synchronizing request rate
with other NSCC nodes. In other words, the
synchronizer reports local popularity to other
nodes and learns what content is popular at
other nodes. There are the following four re-
quirements for the synchronizer:
• Fetching Local Request Rate informa-

tion: the request rate information is ob-
tained from the Interest/Data processor.

• Request Rate Synchronization: it must
maintain an identical view of shared re-
quest rate data set all the time and changes
in the request rate data set are reported to

the k counters for Data ID in Filter_CBF
by the threshold x, increase the value of the
k counters for Data ID in PopularData_
CBF by 1, and create a popular Data record
for Data ID.
Our application of CCBF is similar as the

algorithm in [10] which applies double Count-
ing Bloom filter to identify large flows in
backbone networks, analyzes its false positive,
and proves its effectiveness and space efficien-
cy with extensive experiments. As the “coop-
erative caching’’ is only about filtered popular
content and only the request rate information
of filtered popular content would be synchro-
nized among NSCC nodes, the scalability is-
sue of the NSCC system is mitigated.

There are the three following possibilities
of satisfying Interests from local users:

1) The Interest/Data processor consults its
local cache to see if the requested data is at
local cache. If it is present, the Interest/Data
processor returns it to the requester and must
not send the Interest anywhere else. To ensure
that the Interest would not be sent anywhere
else, the route for this data name points to only
this NSCC application.

2) Otherwise if the requested data is cov-
ered by another NSCC node, the Interest/Data
processor must request the data from that node
and send it back to the requester, but must not
send the Interest anywhere else. The solution
to request data from other nodes is achieved
by appending an NSCC common name pre-
fix in front of the Interest name and setting
up a route for this new name pointing to the
default gateway. In this fashion, the resulting
Interest will only be sent to members in the

PopularData_CBF

Filter_CBF

Not yet popular enough

Popular Data
record

Popular Datah1(ID), h2(ID), ..., hk(ID)
Data ID

Fig.3 Popular content identification with CCBF

China Communications • July 2015 36

themselves. All secret keys are associated with
their blinded versions, which are computed us-
ing a oneway function [12]. Members are rep-
resented by the leaves of a strictly binary key
distribution tree and the key of each internal
tree node is calculated as a mixing function
[12] of the blinded keys of its two children. To
compute the root key of the tree, i.e., the group
key, each member holds all the unblinded keys
of nodes that are on its path to the root and the
blinded keys of nodes that are siblings of the
nodes on its path to the root. Each blinded key
is supplied by a different member of its key as-
sociation group which is defined by its ID and
delegates the task of key distribution evenly
among all the members. While an unblinded
key is computed by the node itself based on
the blinded keys received from members in its
key association and should not be exchanged
with others. Contribution of a unique secret
toward the computation of the root key gives
each member partial control over the group.
Please refer to [11] for the detailed group key
distribution among members in a key associa-
tion when there is node joining or leaving.

For the membership maintenance and
blinded key synchronization within a key as-

the compute cache which then decides what
data should be cached at each node.

• Membership Maintenance: it maintains
a roster of participants. The events of node
leaving or joining the group should be
notified to all live nodes in the group so
that they can make right caching decisions
considering the caching in all alive group
members.

• group Key Management: the access of
content cached within the NSCC group
is protected by group key. Whenever the
roster of participants changes due to node
joining, leaving or failure, group rekeying
should be triggered so that the access of
content cached within the NSCC group can
be confined to currently alive members.
To fetch local request rate information, the

synchronizer simply invokes an Application
Program Interface (API) to read the popular-
ity records managed by the Interest/Data pro-
cessor. The request rate synchronization and
membership maintenance are important for the
system. This information serves as the input of
the object placement algorithm, discussed later
in Section III-C. The synchronizer must obtain
data from all other nodes and this data should
be consistent with that at other nodes. If any
NSCC node has a wrong roster of NSCC
nodes in the group or has a wrong view of the
request rate at another node, compute cache
could make a wrong decision about the global
object placement.

Given that any NSCC members can send
Data packets to other members, they must be
trusted equally and there seems no reason to
ask certain member(s) to take more work such
as the group key management. It is desirable
that all members involve in the group key
management. The group key management
of the NSCC system follows the distributed
group key management scheme for secure ma-
ny-to-many group communication presented
in [11]. Each member is assigned a binary ID
when it joins the NSCC group by its neighbor
who authenticates the node before its joining
and both the joining node and its neighbor
are responsible for generating a secret key for Fig.4 The design of the synchronizer

Synchronizer

Data Storage

Actual request rates

Blinded keys

N
D

N
 A

P
I

Interest/Data Processor

Store local request rates

Compute Cache

Fetch request rates

Sync Interests

Sync Data

RequestRate/key

Interests

RequestRate/key

Data

Compute Cache Compute Cache

Fetch group key

Local Cache

Data set state memory

Digest tree

Digest log

Fetch group key

China Communications • July 201537

data. A sync Interest represents the sender’s
knowledge of the current data set in the form
of cryptographic digest, obtained using digest
tree. To detect data set changes as soon as pos-
sible, every participant keeps an outstanding
sync interest with the current state digest to the
broadcast namespace of these synchronizers, /
ndn/broadcast/NSCC/group. The synchroniz-
ers at other NSCC nodes would receive the
sync Interest. When all participants have the
same knowledge about the data set, the system
is in a stable state, and sync interest from each
member carries an identical state digest. As
soon as some NSCC node generates new data,
the state digest changes, the outstanding inter-
ests get satisfied and then the data sets at these
NSCC nodes are synchronized again. Com-
mon state and knowledge difference discovery
is performed using the digest log. The digest
log is a list of key-value pairs, where the key
is the root digest and the value field contains
the new participant statuses that have been
updated since the previous state. As soon as a
sync Interest discovers new knowledge about
the data set state, the sender of the sync Inter-
est sends out request rate or key Interests to
pull actual request rate or blind key informa-
tion. Any synchronizer that has the new data
can satisfy the Interests, which offers reliable
synchronization of request rates information
and blinded keys.

For the management of the roster, an NSCC
node is added to the roster when its presence
message to the group is received. The partici-
pants periodically send “heartbeat” messages
if they are in the group. If nothing is heard
from an NSCC node for a certain amount of
time, the NSCC node is no longer considered
as a current participant of the group and the
group key requires rekeying.

For the group key rekeying, whenever a new
secret key occurs due to node joining or leav-
ing, its corresponding blinded version would be
stored in local SYNC slice, which triggers the
rekeying process. Then subsequent sync Inter-
ests would discover the Data for the blinded key
and the blinded key would be delivered to other
members. Since any information exchanged

sociation group for group key management,
the synchronizer is designed with a distribut-
ed data synchronization idea based on NDN
SYNC protocol [13], [14]. The SYNC proto-
col offers reliable data synchronization and
takes full advantage of the self-identifying
nature of content and NDN’s natural support
of multicast. Figure 4 illustrates the design of
the synchronizer with two main components:
data set state memory and data storage (SYNC
slice). The data set state memory maintains
the current knowledge of the set of request
rate information and blinded keys in the form
of digest tree, as well as maintains history of
the data set changes in the form of digest log.
In the synchronizer, actual data, either request
rate data or blinded keys data, is named as /
ndn/nodeName/NSCC/group/seq. There is a
data type field in the Data packets that spec-
ifies the data as request rate information or
blinded keys. Inspired by the idea of Merkle
trees [15], digest tree is used to organize the
participant statuses for quick and deterministic
digest generation as illustrated in Figure 5. The
digest tree of the synchronizer at each NSCC
node is always kept up-to-date to accurately
reflect the current state of the data set. When-
ever an NSCC node sends a new Data packet
(either about request rate information or about
blinded keys) or learns about the name of a
new Data packet from another NSCC node,
the corresponding branch of the digest tree is
updated and the state digest is re-calculated.
The synchronizers interact using two types of
Interest/Data message exchanges: synchro-
nization (sync) and actual request rate or key

Fig.5 An example of digest tree

Root digest

Node A's digest Node B's digest

A's Prefix A's SeqNo B's Prefix B's SeqNo

A's Status B's Status

China Communications • July 2015 38

For the computation of a best response at a
node, the excess gain of the node caching an
object is computed based on whether the ob-
ject is cached at other nodes from the current
intermediate global object placement. gik(P−i)
denotes the excess gain incurred by node i
from caching object k under the residual place-
ment P−i and is defined as follow:

gik(P−i) =

rik(di,n+1 − di,i) for k � Q−i,
rik(di,l(i,k) − di,i) for k ∈ Q−i.

 (4)

The best response at node i under P−i is
computed as follow: objects are sorted in de-
scending order by gik(P−i) and the top Si objects
are selected to cache.

The iteration stops when no node wants
to change its object placement. In this way, a
guaranteed global object placement is found
such that each node benefits. For the detailed
description of the algorithm, please refer to
the work in [6]. Note that different algorithms
for the NSCC problem can be configured in
the compute cache in the future without inter-
fering with other components.

3.4 Local cache

The compute cache tells the local cache what
data the cache should contain. The local cache
fetches the data from the publishers and stores
them in the local cache. Whenever the local
cache needs to fetch data, a route for the cor-
responding Interest name pointing to the gate-
way should be installed and then uninstalled
when the data is returned. As designed in the
Interest/Data processor, the access to data
covered by another NSCC node is obtained
by prepending a common prefix specific to the
NSCC group. For example, to fetch /seu/cs/hu/
note.txt, the Interest/Data processor will send
a new Interest /NSCC/group/seu/cs/hu/note.txt.
To answer this Interest, the local cache should
create a new Data packet with the name /
NSCC/group/seu/cs/hu/note.txt. In addition,
to limit the access of data cached within the
NSCC group to only group members, the data
should be encrypted with the group key before
being used to response its requests from the
group. The local cache is responsible for fetch-

in the synchronizer is synchronized among all
members, the blinded key exchange within a
key association is protected by its correspond-
ing unblinded key known only to the subgroup
formed by the recipients. And the blinded key
exchange between neighbors is protected by
their public keys. Then only the direct neighbor
can get the actual blinded version of the secret
key since it is protected by the public key of
the neighbor. After the two neighbors involved
in the node joining or leaving exchange their
blinded versions of their secret keys, they gen-
erate keys for internal nodes in the key tree and
further exchange with other members in their
key associations.

3.3 Compute Cache

The synchronizer provides the compute cache
with a view of object popularity at all the par-
ticipants. Then the compute cache starts a new
round to determine a guaranteed global object
placement. The resulting global object place-
ment tells the local cache what it should con-
tain and the Interest/Data processor what data
is covered by other NSCC nodes. The compu-
tation of a guaranteed global object placement
in the compute cache follows our game theory
approach presented in [6]. In this approach,
these NSCC nodes are sorted in ascending or-
der by their names. With the global view of re-
quest rates information at all NSCC nodes, the
compute cache first assumes that each node
caches the most top popular objects following
their cache size constraints as the initial global
object placement. Then simulate that these
nodes iteratively play the following game to
seek a guaranteed global object placement.
During each iteration, NSCC nodes compute
their object placements (i.e., best responses)
one by one according to their order. The best
response is defined as follow:

Definition 1: (Best Response) Given a resid-
ual placement P−i={P1, P2, ..., Pi−1, Pi+1, ..., Pn},
the best response for node i is the placement
Pi∈Ai such that Ci(P−i + {Pi}) ≤ Ci(P−i + {P′

i}) ,
∀P′

i ∈ Ai , P′

i � Pi where Ai is the set of all the
possible object placements at node i.

China Communications • July 201539

packet before it is sent back to its requesters,
which is performed by the Interest/Data pro-
cessor.

Besides, there is another design about how
to record the cached data to facilitate the data
lookup process. In NDN, an Interest can be
satisfied by a Data with name equal to or more
specific than the name specified in the Interest.
For example, the Data with name /seu/cs/hu/
note.txt can satisfy an Interest with name /seu/
cs/hu or /seu/cs/hu/note.txt. So the local cache
organizes the names of locally cached content
under a common prefix as a chain as illustrated
in Figure 7. Upon the arrival of an Interest, its
name is used as key to search corresponding
chain. If the chain is present, cached content is
found to satisfy the Interest.

3.5 Error checker

In practice, an NSCC node may unintention-
ally fail due to its hardware or software or
overload problem or the physical network
connection. Or a node may leave the group
without explicit notification. Or an NSCC
node may intentionally refuse to answer some
or all the requests from other members for
data it commits to host. Such refusal reduces
overhead in replying others’ requests at the
expense of other members, and its sharing
of data cached at other group members gains
individual advantages, i.e., a cheating and so
selfish behavior. We term such three types of
events as error events in NSCC. The eventual
outcomes of such error events are that other
members may suffer from Interest timing out
and have to fetch the requested data from con-
tent publishers.

The mission of the error checker is to dis-
cover error events in a timely manner and
notify the synchronizer of evicting the initia-
tors of detected error events from the NSCC
group and group rekeying. The error checker
keeps the 95% confidence interval (which is
configurable) of the frequency of Interest tim-
ing out due to normal network instability (ob-
tained from data access history or set by local
operator). It periodically accesses the data
access failure experience from the Interest/

ing the group key from the synchronizer and
encrypting the data to be locally cached. As a
result, the original Data packet is first encrypt-
ed with the group key. Then the group key
name and the encrypted data together serve as
the content field of the new Data packet whose
name starts with the common prefix. And the
new Data packet is signed by the node that
caches it. Figure 6 illustrates the format of a
Data packet with encrypted payload.

Moreover, to reduce response latency, the
local cache generates corresponding new Data
packet for each Data that it should host. Then
it can reply the requests for the Data from
other members directly without invoking data
generation process (including time consuming
signing and encryption) repeatedly. Note that
the original Data packet should be extracted
and decrypted with the group key specified
by the encryption key information in the Data

Fig.6 A Data packet with encrypted content

Fig.7 The organization of indexing of cached content

/seu

Prefix Chain of names for locally cached content

/seu/cs/hu/note.txt /seu/cs/hu/paper.txt /\

/seu/cs/hu/note.txt /seu/cs/hu/paper.txt /\

/seu/cs/hu/note.txt /seu/cs/hu/paper.txt /\

/seu/cs

/seu/cs/hu

/seu/cs/hu/note.txt

/seu/cs/hu/note.txt

/seu/cs/hu/note.txt /\

/seu/cs/hu/paper.txt /seu/cs/hu/paper.txt /\

ContentName

Signature
(digestalgorithm,witness,...)

SignedInfo
(publisherID,keylocator,staletime,...)

Data
(encryptionkeyinfo, Encrypted content)

China Communications • July 2015 40

information to other nodes and fetches that at
other nodes. Both the time and space that the
synchronization takes are O(nm). In the object
placement decisions, the compute cache first
computes the initial global object placement
which takes time O(nmlog(m)). Then during
each iteration, for each node, the computation
of the excess gains and best response takes
time O(m) and O(mlog(m)) separately. So the
object placement decisions making takes time
O(nmlog(m)+(m+mlog(m))nN) = O(nmN-
log(m)) where N is the number of iterations
that the decisions making takes. The space
consumption of the object placement decisions
consists of three parts – the access price mod-
el, the global object placement and the excess
gains which take space O(n2), O(nm) and m re-
spectively. So the object placement decisions
making takes space O(n2+nm+m). In the data
encryption, the local cache encrypts locally
cached data, both the time and space which
takes are O(m). The error checker normally
consults the Interest/Data processor for the
frequency of Interest timing out, which takes
time and space O(1). If an error event occurs,
the time for sending background request traffic
would be O((n−1)M) where M is the number
of background requests for each suspect. And
the space consumption would be the record of
the frequency of background Interest timing
out for all suspects, which is O(n−1). In the
group key management, the group key compu-
tation at an NSCC node requires its secret key
and log(n) blinded keys on its path to the root
node of the key distribution tree. So for group
rekeying, the synchronizer takes time and
space O(1+nlog(n)) = O(nlog(n)).

V. EXPERIMENTAL EVALUATION

This section evaluates the communication
overhead in synchronizing information among
group members and the impact of error events
on the caching performance of the designed
NSCC system.

5.1 Experimental setup

We conducted a number of experiments by

Data processor. When the actual frequency of
Interest timing out is not within the confidence
interval, the error checker starts to investigate.
From the global object placement obtained
from the compute cache and the Interest tim-
ing out record from the Interest/Data proces-
sor, suspects are discovered. For each suspect,
the error checker first consults the synchroniz-
er to see if the suspect is still in the roster of
the group. If the answer is no, the suspect has
already left the NSCC group. Otherwise, the
error checker sends background requests for
data cached only by this suspectable node and
sees how often such requests would time out.
If this frequency of Interest timing out is still
not within the confidence interval, the suspect
is considered to be abnormal and its abnormity
is notified to other nodes in the group. Then
the abnormal node is evicted from the NSCC
group. The eviction of an abnormal node is
realized by triggering group rekeying so that
the abnormal node cannot access data cached
in the group any more.

IV. ANALYSIS AND DISCUSSION

When new request rates information is report-
ed to the compute cache, it starts a new round
of a decision process. Then each NSCC node
adapts to the current access patterns and gains
benefits from other nodes in terms of cache hit
ratio improvement, i.e., access cost reduction.
But NSCC also incurs overhead resulting from
the request rate synchronization, the object
placement decisions, data encryption, and
serving requests for data locally cached from
other NSCC nodes. The request rate update
frequency determines the overhead in the in-
formation synchronization, object placement
decisions, and data encryption. A balance
should be made between the gain in adapting
caching to users’ access patterns and the over-
head in computation and communication by
adjusting the request rate update frequency.

Due to space limitation, we concisely an-
alyze the time and space complexity of the
NSCC system. In the request rate synchroni-
zation, an NSCC node sends its request rates

China Communications • July 201541

node, the content server provides the data.
We assume there are 1000 unit-sized ob-

jects in the system and the access pattern at
any node i follows a Zipf distribution with
exponent s (Zipf preference). The Zipf distri-
bution has been shown to be a good model for
the popularity of web objects [18]. The three
NSCC nodes are set with a caching capacity
of 100 objects.

5.2 The impact of request rate
update frequency

Since users’ access patterns are dynamically
changed, the synchronizers at NSCC group
members periodically exchange request rates
at which their users access content items. Such
exchange triggers the compute cache process
to adapt the caching to users’ dynamic access
patterns. In this subsection, we evaluate how
request rate update frequency impacts the
overhead spent in the synchronizer, and how
the request rate update frequency and the dy-
namics of users’ access patterns impact users’
average cache hit ratio.

Group rekeying occurs only on demand.
Without group rekeying happening, the over-
head in the synchronizer comprises of the
messages exchanged for the membership
maintenance (“heartbeat” messages) and the
messages exchanged for the request rate up-
date. The overhead of the former is relative
stable, while that of the latter relates to the
request rate update frequency. To evaluate the
impact of the request rate update frequency,
we set different request rate update frequency
(from every minute to every four minutes) for
a five-minute experiment and then measure the
number of messages and the number of bytes
sent during the experiment.

Figure 9 illustrates the corresponding re-
sults and each result is averaged from five
runs of the experiments. It can be seen that as
the request rate update interval increases (the
request rates are updated less frequently), the
average number of messages or the average
number of bytes sent by each node decreases.
But when the request rate update interval in-
creases from three minutes to four minutes, the

deploying the NSCC system on PlanetLab
[16]. Figure 8 illustrates the experiment setup
for the NSCC system. We installed CCNx li-
brary on seven PlanetLab nodes. Three nodes
run our NSCC application, and also run NDN
traffic generator application that simulates In-
terests sent by local users. An additional three
gateway nodes are responsible for forwarding
Interests to other gateways or the content serv-
er when necessary. At each gateway, routes
pointing to other gateways or the content
server are set up with the ccndc [17] tool. The
seventh node is the content server node rep-
resenting the rest of the network. If an NSCC
node is unable to fetch data from any NSCC

Fig.9 The overhead in the synchronizer versus the request rate update frequency

Fig.8 The deployment of experiments

node1
users

node2
users

gate
way3

gate
way2

node3
users

gate
way1

Server

China Communications • July 2015 42

age cache hit ratio. This is because the request
rate information from statistic almost does not
changes during the whole experiment and the
exchange of the request rate information makes
little difference in the caching decisions. So if
operators of NSCC nodes are pretty sure that
their users’ access patterns are almost static,
they can set the request rate update interval to
be a large value, and even no request rate infor-
mation update. Note that under the static access
pattern, the cache hit ratio of each NSCC node
does decrease a little bit as the request rate up-

difference in the number of bytes sent by each
node is negligible. This is because that during
the five-minute experiments, with three or four
minutes as the request rate update interval, the
request rates can be updated by only once, and
the “heartbeat” messages for the two five-min-
ute experiments should be almost the same.

Then we evaluate how the request rate
update frequency and users’ access patterns
together impact the cache hit ratio of users
requests. For the access patterns, we evaluate
the following three cases:
• Static access pattern: during the five-min-

ute experiments, the access pattern of users
behind each NSCC node always follows the
Zipf distribution with exponent 0.73 and
the popularity ranking of objects does not
changes.

• Dynamic access pattern 1: during the
five-minute experiments, the access pattern
of users behind each NSCC node always
follows the Zipf distribution with exponent
0.73, but for each minute, the popularity
ranking of objects cycle moves by 10, e.g.,
ranking changes from 0, 1, 2, ..., n-1 to
n-10, n-9, ..., n-2, n-1, 0, 1,..., n-11.

• Dynamic access pattern 2: during the
five-minute experiments, the access pattern
of users behind each NSCC node always
follows the Zipf distribution with exponent
0.73, but for each minute, the popularity
ranking of objects cycle moves by 20.
Figure 10 illustrates the average cache hit ra-

tio of requests at each node under the three us-
ers’ access patterns when NSCC nodes are with
different request rate update intervals (each
result is averaged from five runs). As displayed,
under our considered scenarios, NSCC achieves
about a 0:10 improvement in cache hit ratio at
each node against that if the three nodes operate
in isolation (denoted as GL in Figure 10) and
update their caching decisions with the same
intervals. That said, NSCC offers global object
placements that satisfy the minimum participa-
tion requirement, and treats these nodes fairly.
From Figure 10(a), it can be seen that under the
static access pattern, the request rate update fre-
quency makes almost no difference on the aver-

(b) Dynamic access pattern 1

(a) Static access pattern

(c) Dynamic access pattern 2

Fig.10 The average cache hit ratio versus the request rate update frequency
under different user access patterns

China Communications • July 201543

hit ratio and the overhead in synchronizing
request rate information. For example, in our
considered five-minute experiments, combin-
ing Figure 9 and Figures 10(b) and 10(c), an
update interval of three minutes would be the
tradeoff as if increasing the request rate update
interval, the bytes sent by each node does not
decrease, but the cache hit ratio does decrease.

5.3 The impact of error events

As mentioned in Section III-E, the eventual
outcomes of node failure, node leaving or
node cheating are that the requests for content
cached only at the node failed or leaving or
cheating time out and are resent to the content
server for the matching Data packets. With this
in mind, to simplify the evaluation, we choose
to evaluate the NSCC performance under node
failure event representing that under three
types of error events. To be specific, we mea-
sure how long it takes an alive NSCC node to
detect the failure of another node and how a
node failure impacts the content caching and
the NSCC performance in terms of cache hit
ratio and data access delay.

We emulate 20 trials of the node failure in
the following way: during a five-minute exper-
iment in which users’ access patterns are static
and follow Zipf distribution with exponent
0.73, we randomly choose a node to fail and
leave the NSCC group at a time between the
second and the third minute without explicit
notification to the others. The left two alive
nodes in the group may still send Interests for
Data that they think are held only by the failed
node until their error checkers detect the node
failure. We measure how long it takes the two
alive nodes to detect the node failure in these
experiments and illustrate the results in Figure
11. When there is node failure, the caching be-
longing to the failed node does not contribute
to the NSCC group any more. And thus the
alive nodes need to re-distribute the content
in their caches to adapt to the changes. To be
specific, after the node failure is discovered,
the synchronizers of the alive nodes distribute
a new group key and synchronize their request
rates. Then the compute cache starts a new

date interval increases. The reason for this is as
follow. The initial caching is populated accord-
ing to the ideal Zipf distribution with exponent
0.73. But the following caching decisions are
based on the access patterns obtained from sta-
tistics which may be a little different from the
ideal Zipf distribution due to the Pseudo-ran-
dom number generator.

Figures 10(b) and 10(c) illustrate that under
the two dynamic access patterns, as expected,
the cache hit ratios at the three nodes are im-
proved more if the NSCC nodes synchronize
their request rate information more frequently
(i.e., with smaller update interval). This is be-
cause the content caching adapts to the present
access pattern more quickly. Moreover, com-
paring the cache hit ratios in Figure 10(b) with
that in Figure 10(c), it can be seen that even
with the same request rate update intervals,
the cache hit ratio decreases when the access
patterns are more dynamic. The reason for this
is that the more dynamic access pattern re-
quires more frequent request rate exchange to
capture the dynamics and then being reflected
in the content caching. But as shown in Fig-
ure 9, more frequent request rate information
exchange generally implies more overhead
in terms of messages and bytes sent by each
node in the synchronizer. So a tradeoff should
be made between the improvement in cache

Fig.11 The time of detecting node failure

China Communications • July 2015 44

fies the other alive node as soon as possible.
The notification results in the small difference
in the time that the two alive nodes spend on
detecting the node failure. From Figure 12, it
can be seen that the changes of content cach-
ing at the two alive nodes are within 24 to 36.
Namely, as their caches are with a size of 100
objects, about 12 to 18 cache units need to be
replaced by content newly downloaded from
the content server. As shown in Figure 13(a),
as expected, the cache hit ratio before the node
failure is the largest (larger than 0.54), and that
during the node failure and not detected yet is
the smallest (smaller than 0.525). The reason

round to make the caching decisions for alive
nodes. So the alive nodes have a new view of
what are locally cached and what are cached
at the other alive node, and access data fol-
lowing that view. We measure the changes of
content caching (inserting or deleting content
in the caches) at the two alive nodes due to the
node failure and illustrate them in Figure 12.
We also compare the average cache hit ratio as
well as the average access delay of data access
at the two alive nodes before the node fail-
ure with that during the node failure and not
detected yet and with that after detecting the
node failure, and illustrate them in Figure 13.

Seen from Figure 11, both nodes detect the
node failures mostly within 60 to 100 seconds,
less than 120 seconds, and the difference in
the time spent by the two nodes detecting the
node failures is negligible. For an NSCC node,
its error checker consults the data access fail-
ure experience from its Interest/Data processor
every once for a while within (45, 60) seconds
(configurable) and the background traffic for
testing a suspect lasts for 60 seconds (config-
urable). And thus the node failures should be
detected within 120 seconds. When an NSCC
node fails, a large number of Interests timing
out would be detected by the error checkers
of the two alive nodes. And such abnormity
is further corroborated by background data
access traffic. Once the error checker of an
alive node identifies the node failure, it noti- Fig.12 The changes of content caching due to the node failure

Fig.13 The average cache hit ratio and access delay of alive nodes before the failure, during and after detecting the node failure

(a) Hit ratio (b) Access delay

China Communications • July 201545

mentation of an NSCC system. The previous
work [7] provides a basic design of the NSCC
system using a four-component design. This
paper extends the basic design. Access con-
trol over data cached within the NSCC group
is built into the system to free NSCC group
members from receiving and replying Inter-
ests from non-members. And an extra error
checker is offered so that the system can time-
ly detect and recover from node failure, node
leaving and node cheating. The data access
control is implemented by distributing group
key using NDN SYNC protocol and protecting
data with the group key. Our system can be
deployed at an organization without requiring
any changes to other nodes at the organization
or to the underlying CCNx library. Through
deployment on PlanetLab, we explored the po-
tential benefits of the enhanced NSCC system,
the communication overhead of the system as
well as the time that the error checker takes
to discover error events and the extent of the
system performance degradation due to such
errors.

ACKNOWLEDGMENTS

We would like to thank the anonymous re-
viewers for their valuable comments and sug-
gestions to improve the quality of the paper.
This work was sponsored by the National
Grand Fundamental Research 973 program
of China under Grant No.2009CB320505, the
National Nature Science Foundation of China
under Grant No. 60973123, the Technology
Support Program (Industry) of Jiangsu under
Grant No.BE2011173, and Prospective Re-
search Project on Future Networks of Jiangsu
Future Networks Innovation Institute under
Grant No.BY2013095-5-03. Any opinions,
findings and conclusions or recommendations
expressed in this material are those of the au-
thors and do not necessarily reflect the views
of those sponsors.

References
[1] J. Ren, W. Qi, C. Westphal, J. Wang, K. Lu, S. Liu,

and S. Wang, “Magic: A distributed max-gain
in-network caching strategy in information-cen-

for this is as follow. Before the node failure,
the caching of the three nodes contributes to
the group. While during the node failure and
not detected yet and after detecting the node
failure, only the caching of the two alive nodes
contributes to the group. And the content
caching after detecting the node failure adapts
to users’ access patterns better. From Figure
13(b), it can be seen that the access delay be-
fore the node failure is the smallest, and that
during the node failure and not detected yet is
the largest. The explanation for this is similar
to that for the cache hit ratio, but also that
during the node failure and not detected yet,
some Interests are sent to the failed node, then
time out and are resent to the content server,
which greatly increases the average access
delay. The above experimental results suggest
that the performance degradation in terms
of average cache hit ratio and access delay
during the node failure and not detected yet is
non-ignorable. And thus the error checker that
can timely detects such node failures plays a
fundamental role in the performance of the
NSCC system.

VI. CONCLUSION

Our enhanced Not So Cooperative Caching
(NSCC) system enables selfish and autono-
mous caching nodes in Named Data Network-
ing (NDN) to cooperate in sharing cached data
and making caching decisions in an Informa-
tion Centric Networking (ICN) way. It con-
siders a network comprised of selfish nodes
requesting data in an ICN way; each is with
caching capability and an objective of reduc-
ing its own access cost by fetching data from
its local cache or from neighboring caches;
and these selfish nodes may unintentionally
fail or intentionally refuse to answer other
members’ requests to gain individual advan-
tage. These nodes would cooperate in caching
and share content if and only if they each gain
benefits as compared to that when they operate
in isolation.

This work includes both a solution for
the NSCC problem and a design and imple-

China Communications • July 2015 46

[17] Ccndc. Http://www.ccnx.org/releases/latest/
doc/manpages/ccndc.1.html. [18] D. N. Ser-
panos, G. Karakostas, and W. H. Wolf, “Effective
caching of web objects using zipf’s law,” in IEEE
International Conference on Multimedia and
Expo (II), 2000, pp. 727–730.

Biographies
GoNG Jian, is a professor in School of Computer
Science and Engineering, Southeast University. His
research interests are network architecture, network
intrusion detection, and network management. He
received his BS in computer software from Nanjing
University, and his PhD in computer science and
technology from Southeast University. Email: jgong@
njnet.edu.cn

CHeNG Guang, a professor of computer science at
Southeast University, received his BS in Transporta-
tion Engineering from Southeast University in 1994,
MS in Computer Science from Hefei University of
Technology in 2000, and PhD in Computer Science
from Southeast University in 2003. From 2006 to
2007, he was a post-doctor at School of Electrical
and Computer Engineering in Georgia Institute of
Technology. His current research interests include ac-
tive measurement and traffic sampling in computer
network. Email: gcheng@njnet.edu.cn

Hu Xiaoyan, the corresponding author, email:
xyhu@njnet.edu.cn. She focuses her research inter-
ests on information centric networking, in-network
caching and scalable name-based routing. She re-
ceived her BS in software engineering from Nanjing
University of Science and Technology in 2007 and
PhD in computer architecture from Southeast Univer-
sity in 2015. She visited netsec lab in Colorado State
University, a research group working on NDN, from
Sep. 2010 to Aug. 2012. Email: xyhu@njnet.edu.cn

ZHANG Weiwei, a PhD candidate in School of Com-
puter Science and Engineering, Southeast University,
focuses his research interests on computer network,
network security and network management. He re-
ceived his BS in software engineering from Southeast
University, and MS in computer architecture from
Southeast University. Email: wwzhang@njnet.edu.cn

Ahmad Jakalan, was born in Aleppo, Syria. Now he
is a PhD Candidate in the School of Computer Sci-
ence and Engineering, Southeast University, China.
His research interests are network security, network
intrusion detection, IP relationship discovery, and
network traffic and host profiling. He received his BS
in Informatics Engineering from Aleppo University,
Aleppo, Syria in 2005 and MS in Computer Science
and Technology from Southeast University. Email:
ahmad@njnet.edu.cn

tric networks,” in Proc. INFOCOM Workshops,
2014, pp. 470–475.

[2] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic
in-network caching for information-centric net-
works,” in Proc. ICN’12, 2012, pp. 55–60.

[3] J. Rajahalme, M. Sa¨rela¨, P. Nikander, and S.
Tarkoma, “Incentive-compatible caching and
peering in data-oriented networks,” in CoNEXT,
2008, p. 62.

[4] S. DiBenedetto, C. Papadopoulos, and D.
Massey, “Routing policies in named data net-
working,” in Proc. ICN’11. New York, NY, USA:
ACM, 2011, pp. 38–43.

[5] V. Pacifici and G. Dn, “Content-peering dynam-
ics of autonomous caches in a content-centric
network.” in Proc. INFOCOM. IEEE, 2013, pp.
1079–1087.

[6] X. Hu and J. Gong, “Study on the theoretical
framework of not so cooperative caching,”
Journal of Internet Technology, vol. 15, no. 3, pp.
351–362, 2014.

[7] X. Hu, C. Papadopoulos, J. Gong, and D. Massey,
“Not so cooperative caching in named data
networking,” in Globecom 2013 - Next Genera-
tion Networking Symposium (GC13 NGN), At-
lanta, USA, Dec 2013.

[8] Ccnx project. Http://www.ccnx.org/.
[9] A. Broder, M. Mitzenmacher, and A. B. I. M.

Mitzenmacher, “Network applications of bloom
filters: A survey,” in Internet Mathematics, 2002,
pp. 636–646.

[10] H. Wu, J. Gong, and W. Yang, “Algorithm based
on double counter bloom filter for large flows
identification,” Journal of Software, vol. 21, no.
5, pp. 1115–1126, 2010.

[11] L. R. Dondeti, S. Mukherjee, and A. Samal, “A
distributed group key management scheme for
secure many-to-many communication,” Depart-
ment of Computer Science, University of Mary-
land, Tech. Rep. PINTL-TR-207-99, 1999.

[12] D. Balenson, D. McGrew, and A. Sherman, “Key
management for large dynamic groups: One-
way function trees and amortized initializa-
tion,” IETF Draft: draft-balenson-groupkeymg-
mt-oft-00.txt, 1999.

[13] Sync protocol. Http://www.ccnx.org/releases/
latest/doc/technical/SynchronizationProtoc [14]
Z. Zhu and A. Afanasyev, “Let’s ChronoSync:
Decentralized dataset state synchronization in
Named Data Networking,” in Proceedings of the
21st IEEE International Conference on Network
Protocols (ICNP 2013), Goettingen, Germany,
October 2013.

[15] R. C. Merkle, “A certified digital signature,” in
Proceedings on Advances in Cryptology. New
York, NY, USA: Springer-Verlag New York, Inc.,
1989, pp. 218–238.

[16] Planetlab. Http://www.planet-lab.org/.

