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a b s t r a c t 

Moving Target Defense (MTD) has emerged as a game changer to reverse the asymmetric situation be- 

tween attackers and defenders, and as one of the most effective countermeasures to mitigate DDoS at- 

tacks, shuffling-based MTD has gained ever-growing attention in cyber security. Despite the increased 

security, frequent shuffles would significantly bring heavy burden to the system. Moreover, most exist- 

ing work has not adequately considered the impact of MTD techniques on the defender, and especially 

ignored that on legitimate users. Due to the lack of cost-effective shuffling methods, it is difficult to 

reach the optimal balance between the performance and overhead associated with the MTD deployment. 

Building on our preliminary work in this field, we propose a novel cost-effective shuffling method, which 

involves common users as a trilateral game for strategy generation and resists DDoS attacks with several 

MTD mechanisms. The novel game model extends our previous work to further describe the interaction 

among the attacker, the defender and users in detail, and we exploit Multi-Objective Markov Decision 

Processes to find the optimal MTD strategy by solving the trade-off problem between the effectiveness 

and cost of shuffling. By designing a trilateral game cost-effective shuffling algorithm, we capture the 

best MTD strategy and reach a balance between them in a given shuffling scenario. Simulation and ex- 

periments on an experimental software-defined network (SDN) indicate that our approach can effectively 

mitigate DDoS attacks with an acceptable overload, and exhibit better performance than other related 

and state of the art approaches. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Distributed Denial-of-Service (DDoS) attacks ( Wang et al., 2017 ),

hich are intended to prevent legitimate users from accessing spe-

ific network resources, have been considered as one of the largest

nsolved and most serious threats to cyber security. Even though

here are a number of DDoS defense mechanisms available (e.g.,

ntrusion detection system), DDoS attacks can easily bypass tra-

itional defenses by leveraging many IP addresses as the source

f their packet flood or structuring attack packets to mimic legit-

mate traffic. Specifically, adversaries can take control of networks

f compromised and remotely controlled hosts, known as botnets

 Albanese et al., 2018 ), to send a large volume of illegitimate re-
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uests to the target servers, overwhelming their resources and de-

rading performance for users ( Wright et al., 2016 ). 

Under normal circumstances, cyber attacks are launched af-

er reconnaissance efforts aimed at scanning the attack sur-

ace and collecting critical information about the target system

 Sugrim et al., 2018 ). Unfortunately, cyber configurations are typ-

cally deterministic, static and homogeneous ( Blakely et al., 2019 ),

hich brings adversaries asymmetric advantages over the defend-

rs. In detail, adversaries may systematically probe target networks

o gather additional information after the initial compromise, and

aunch attacks at their chosen time point to exploit the discov-

red vulnerabilities ( Carvalho and Ford, 2014 ). On one hand, due

o the passive position, it is difficult for a traditional defender to

rotect all resources from all possible DDoS attacks at all times.

n the other hand, the traditional strategy (e.g., firewalls) relies on

nowing the characteristics of attacks to defend the target system.

t becomes inefficient and insufficient when facing more advanced

DoS attacks with unknown patterns or launched from botnets,

hich is common in today’s cyber attacks. 
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In order to reverse the asymmetric situation between the

attacker and the defender, Moving Target Defense (MTD) ( Cai

et al., 2016; Lei et al., 2018a ) has recently emerged as a game

changer in the field of cyber security. MTD regularly or strategi-

cally changes system attack surfaces to reduce attackers’ under-

standing of the target system, forcing them to continually reassess

and replan their cyber attack operations. Any discovered vulnera-

bilities may disappear after enough time has passed, thus reducing

the chance of a successful exploit. Essentially, the shuffling-based

MTD significantly increases attack cost/complexity, which makes it

far more difficult for an adversary to launch a successful attack

( Manadhata and Wing, 2004 ). Therefore, many MTD based meth-

ods have been recently proposed to help mitigate DDoS attacks. In

general, these methods allow the defender to dynamically recon-

figure clients or migrate them among a large pool of proxy servers,

and adversaries can strike specific targets only if they know which

ones are in use at the time. 

Although there are some studies ( Bardas et al., 2017; Hong

and Kim, 2015 ) proposing evaluation and optimization of shuffling-

based MTD strategies in the literature, they mostly focus on solu-

tions in which the security of the system is greatly improved. We

argue that the strategy of MTD mechanisms might not be optimal

for a defender considering that in some cases the defense costs

have been ignored when evaluating its utility. In addition, an MTD

mechanism with a high frequency of shuffling has inevitable neg-

ative effects on the system, such as reducing the quality of ser-

vice (QoS) on top of the extra costs associated ( Zangeneh and Sha-

jari, 2018 ), which may also affect the stable access to the system

from legal users. Therefore, there is a need to design cost-effective

solutions that can strengthen the system from the attacks while

restricting defense overhead and bringing a minimal service degra-

dation to common users. 

In our previous work ( Zhou et al., 2019 ), we modeled the game

between the attacker and the defender and discussed the game

process and game payoff to guide the defender to analyze the im-

pact of different MTD strategies on the protected system. Then, the

Multi-Objective Markov Decision Processes ( Hahn et al., 2019 ) was

exploited to solve the trade-off problem between the effectiveness

and cost for MTD shuffling. Thus, a cost-effective shuffling method

was proposed to reach the best strategy and resist DDoS attacks

using MTD mechanisms, such as IP hopping, port hopping and mi-

gration. Although that preliminary work represents the first impor-

tant step towards a comprehensive solution to the problem of cost-

effectiveness balance when utilizing MTD against DDoS attacks,

several limitations still exist. First, as shown in Zhou et al. (2019) ,

the shuffling-based MTD mechanisms may introduce a costly over-

head to legitimate users and cause a backlog of service requests,

which has been ignored in respect of making shuffling decisions in

our previous work. Hence, users ineluctably become the third party

of this game, and their overhead must be taken into consideration

when deploying MTD mechanisms. Second, the game strategies of

both players in prior work have been designed in advance, which

may not match the actual situation and bias the decisions. Third,

the previously proposed shuffling algorithm lacks consideration of

all conditions, and may make extreme decisions for several high

load VMs, which will lead these users to have to suffer from at-

tacks. 

In this paper, in order to ensure the best cost-effectiveness bal-

ance of MTD shuffling, we introduce a novel trilateral game the-

ory that can involve legitimate users as special participants of the

game. We significantly revised our previous game model to cap-

ture the effects of different game strategies on the performance

and overhead of shuffling-based MTD mechanisms, especially, the

users’ overhead has been fully discussed at the same time. In ad-

dition, to accurately reflect the decision-making situations of all

game players, heuristic strategies have been used to replace those
n previous work for all players. Finally, a novel cost-effective shuf-

ing algorithm has been proposed to find the optimal strategy that

alances the effectiveness and cost of shuffling-based MTD, and we

lso extend experiments with additional strategies and more kinds

f attacks to prove the advantage of our method in resisting DDoS

ttacks with limited overhead. In summary, the main contributions

f this work are listed as follows: 

• We model the interaction among tripartite participants with

heuristic strategies as a sequential game and then exploit

Multi-Objective Markov Decision Processes (MOMDP) for solv-

ing the multi-stage stochastic optimization of decision prob-

lems. 
• We propose an MTD shuffling scenario to increase the applica-

bility of the proposed method, and it can help to further ana-

lyze and quantitatively evaluate the detailed payoffs of different

game players. 
• We present a novel Trilateral Game Cost-Effective Shuffling al-

gorithm (TCS) to find the optimal strategy for a sequence of de-

cisions and reach a trade-off between the effectiveness and the

cost of MTD while guaranteeing legitimate users’ access to the

service. 
• The proposal is compared with state of the art methods on an

experimental SDN testbed. Simulation and experimental results

have shown that our method can effectively shuffle with lim-

ited cost and performs well in resisting DDoS attacks. 

The remainder of this paper is organized as follows. We dis-

uss the related work in Section 2 and propose the threat model

n Section 3 . Model specification and detailed analysis of the

ame are presented in Section 4 . Description of the shuffling sce-

ario and algorithm is given in Section 5 . The performance of our

roposed method is evaluated via simulation and experiment in

ection 6 . Finally, we conclude the paper in Section 7 . 

. Related work 

In this section, we present the existing literatures on MTD shuf-

ing mechanisms, MTD for DDoS attacks, evaluation for MTD, and

ame-based MTD strategies. 

.1. MTD shuffling mechanisms 

The shuffling-based MTD approaches dynamically reconfigure

he network attributes over time to ensure the security of the

ystem. The goal of shuffling the attack surface is to prevent an

ttacker from collecting the information of target networks such

s scanning for open-ports, and sending non-malicious traffic to

ncover system topology or discover vulnerabilities. A number of

huffling-based MTD approaches have been proposed and can be

lassified into random, event-based, and hybrid mutation. Early re-

earches on random mutations ( Chang et al., 2018; Gillani et al.,

015 ) stipulate that each shuffle in a random mutation occurs af-

er a set time interval which could be random or periodic. The

ime interval would be the only information needed in this case,

hich can be easily speculated once the attacker understands the

huffling rules. In contrast, the moves in event-based mutations

 Crouse et al., 2015; Zhang et al., 2017 ) rely on extra information

uch as security policies and alerts to trigger shuffling mechanisms.

pon receiving an external stimulus, the attack surface would be

huffled in order to mitigate the event. Even though unnecessary

verhead can be avoided in event-based mutations, it does not

elp the defender in terms of security when facing unknown at-

acks that can bypass the detection. Therefore, hybrid mutations

ffer a mixed approach which combines many aspects of random

nd event-based mutations. Several researchers have proposed hy-

rid MTD models ( Huang and Ghosh, 2011; Kampanakis et al.,
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014 ) that shuffle either at certain intervals or through events.

he combination of random and event-based mutations makes up

or each other’s deficiencies, and thus provides proactive defense

gainst adaptive adversaries while keeping the overhead at a lower

evel. However, traditional MTD shuffling mechanisms mostly move

rom the point of view of the defender. Due to lack of description

f the attacker’s behaviors, it is uncertain whether the target net-

ork is incomplete or noisy for the attacker. 

.2. MTD for DDoS attacks 

Due to the capabilities of elastic capacity provisioned in the

loud platforms, many MTD techniques have been implemented to

itigate DDoS attacks recently. Some researches ( Jia et al., 2014;

ang et al., 2014 ) have focused on MTD techniques that de-

loy proxies between clients and servers, and reconfigure them

o disrupt knowledge accumulated by adversaries, either proac-

ively or in response to detected threats. Likewise, the goal of

TD-based DDoS mitigation methods is to force attackers to

trike the wrong target with additional costs, and thereby pro-

ecting the real network assets. In order to redirect legitimate

sers to secure VMs and restrict attackers in quarantine ones,

enkatesan et al. (2016) proposed a new proxy assignment strat-

gy to isolate compromised servers, thereby reducing the im-

act of attacks. Moreover, an SDN-based MTD mechanism to de-

end against a type of DDoS attacks called Crossfire was pro-

osed by Aydeger et al. (2019) , it reorganized the routes in such

 way that the congested links are avoided during packet for-

arding. In the context of detection and defense of DDoS at-

acks, Liu et al. (2018) combined the programmability of SDN

nd the flexibility of network function virtualization (NFV) for

he improvement of system security. In addition, authors in

teinberger et al. (2018) proposed a collaborative and scalable

DoS mitigation approach that combines MTD and SDN to limit

he effects caused by large-scale DDoS attacks, and then integrated

he low cost solution into existing system infrastructure. Although

TD-based methods can improve the system’s ability to resist

DoS attacks, in some extreme cases, they may exhibit weak per-

ormance but with much overhead. 

.3. Evaluation for MTD 

Meanwhile, a rich line of research was proposed to evaluate

TD mechanisms by quantifying the changes on the attack sur-

ace and assessing the performance of the mutations ( Alavizadeh

t al., 2018; 2019 ). Combining various types of MTD assessments,

eeuwen et al. (2016) summarized prior approaches to the eval-

ation of MTD techniques and developed a single hybrid exper-

ment for analysis of the various aspects of MTD approaches. To

ssess the effectiveness of MTD in a quantitative way, Bopche and

ehtre (2017) employed classical graph distance metrics such as

aximum common subgraph (MCS) and graph edit distance (GED)

o measure temporal changes in attack surface of dynamic net-

orks. Hong et al. (2018) also proposed a temporal graph-based

ecurity model and developed a new set of dynamic security met-

ics to assess and compare their effectiveness. Different from those

emporal models, Connell et al. (2018) proposed a method that in-

olves a utility function to capture the trade-off between security

nd performance, and thereby evaluating the resource availability

nd security of MTD mechanisms. Moreover, system attack sur-

ace (SAS) ( Xiong et al., 2019 ) and analytic hierarchy process (AHP)

 Zhang et al., 2019 ) based evaluation models have also been pro-

osed to quantify the effectiveness and costs of MTD. In order to

horoughly analyze the impact of MTD, most studies have shifted

rom qualitative to quantitative evaluation of MTD, however, ab-
tract models always hinder the methods from being actually de-

loyed. 

.4. Game-based MTD strategies 

In order to learn MTD from the perspective of both sides,

ome researchers have adopted game theory ( Cybenko et al., 2019;

an et al., 2019; Wang et al., 2018 ) to model the interaction

etween the attacker and the defender and determine the se-

ection of MTD strategy. Prakash and Wellman (2015) employed

mpirical and game theoretic techniques to examine the game

rocess between both players. Although they showed that secu-

ity alerts play an important role in effective move selection, the

ost of the moves was ignored. Feng et al. (2017) proposed a

ayesian Stackelberg game that models the signaling strategies

or the defender, and theoretically proved that defensive advan-

ages can be established through strategic information disclosure.

imilarly, a repeated Bayesian Stackelberg game was utilized by

ahab et al. (2019) to optimize the balance between detection

oad and the accuracy of multi-type attacks. Moreover, Markov De-

ision Process (MDP) based approaches have been utilized to an-

lyze and further select policies by some researchers ( Hu et al.,

017; Miehling et al., 2015 ). In Lei et al. (2017) , a Markov game

ased optimal MTD strategy selection method was proposed to

alance the defensive revenue and network service quality. In the

odel, the attack surface changes with the exploitation of network

ulnerability, and the effectiveness of the method has been proved

y case study. Building on this work, Lei et al. (2018b) then pro-

osed an incomplete information Markov game approach which

s more realistic for strategy generation. Although the proposed

odel has been examined via theoretical analysis and numerical

tudy, the game process is built only between the attacker and de-

ender as well. 

.5. Discussion 

Based on the literature review given above, it can be argued

hat the vast majority of the works use shuffling-based MTD with

he aim of coming up with a dynamic attack surface which could

ncrease the system security. Different from that observation, we

ot only take advantage of shuffling mechanisms and SDN with

he purpose of resisting DDoS attacks effectively, but also but

lso fully discuss the overhead in our solution. Although some re-

earches have proposed various models to evaluate the effective-

ess of MTD, the great mass of the proposed solutions do not meet

he feasibility and universality, as they apply abstract model for

ssessment while ignoring the defense cost of MTD. Contrary to

his, our work employs a specific shuffling scenario, which can help

onstruct assessment models and determine the parameters, thus

he effectiveness and cost of the proposal can be evaluated quan-

itatively. 

Another observation is that nearly all the works consider only

he attacker and the defender as the game players for solving the

ecision-making problems under the MTD game. Opposite to this

bservation, our solution takes the user overhead into considera-

ion and treats legitimate users as special participators in a novel

rilateral game. Similarly, the traditional MDP is not suitable for the

ovel game model, thereby the MOMDP has been exploited for the

ulti-objective optimization of strategies in our solution. In addi-

ion, it is also worth noting that in an effort to deal with the op-

imization problems, the great mass of approaches use theoretical

nalysis or numerical studies for examining the proposed systems

nder a limited number of metrics. On the bright side, our solu-

ion is evaluated on an SDN testbed through both simulation and

xperiments, and achieves better performance in comparison with

tate of the art methods. 
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Finally, one could say that the problem of best MTD strategy re-

mains largely an open issue. Namely, some solutions are not able

to describe this kind of interactions while others do, but the model

they present is still not accurate. To cope with this shortcoming,

the work at hand has put considerable effort into optimizing the

cost-effective trilateral game model and developing quantitative

evaluations that are able to conform to reality. 

3. Threat model 

In this section, we describe a threat model to characterize the

behavior of attackers, the moving target defense mechanism and

the reaction of common users. We assume that the network plat-

form and the service provider are trusted, and meanwhile attack-

ers come from external network. The rational and tactful adver-

sary may also have multiple network resources to scan and probe

before strategy execution, although they may not utilize all of it

when attacking targets. We also assume that the defender might

take advantage of some defense mechanism to prevent the target

system from being compromised. In addition, common users, who

play the role of the third party, may pay more attention to the per-

formance of the system service rather than the actions and strate-

gies of the other two participants. 

3.1. Attacker behavior 

A strategic and rational attacker, with the objective of maxi-

mizing the number of machines that can be compromised in the

target network, always needs to obtain some sensitive parameters

about the defenders before launching a successful attack. In order

to gain knowledge of the protected system, an attacker may take

the time, computing, and monetary resources to conduct recon-

naissance operations that can be either passive (e.g., sniffing on an

interface) or active (e.g., pinging a host). Once enough information

about the defender has been obtained, the attack will be launched

with characteristics that are systematically decided by the current

system state as well as the defense actions. The whole procedure

including probing and launching the attack incurs significant cost.

For example, the cost of launching a DDoS attack will be related to

the resources consumed by previous IP address scanning, stealthy

port scanning and the amount of utilized clients when the attack

happens. 

3.2. Defense mechanism 

In order to guard a system from being hacked or destroyed,

the defender has to collect the information about the whole sys-

tem and any suspicious reconnaissance behavior that may lead to

risks. Using moving target defenses to safeguard the system, the

defender needs to make shuffles to change the attack surface as

well as take other necessary measures against an attacker. For each

shuffle, it incurs a shuffle cost due to the utilized computing and

network resources. We assume the occurrence of a DDoS attack

can be easily detected and the defender can acquire the informa-

tion about the compromised client within a very short time-frame.

In detail, this paper focuses on shuffle based MTD techniques that

can be implemented at network level, and the DDoS detection

techniques are beyond the scope of this paper. 

Therefore, the defense mechanism is defined as follows. Once

one or several hosts in the protected system are compromised, in

order to prevent the follow-up, the defender will shuffle the ex-

ploited hosts by the following defense types. 

• Port hopping: Dynamic and continuous change of port number

of a particular service. 
• IP hopping: The defender changes the IP address of a virtual

machine (VM) dynamically and incessantly. 
• Migration: The defender migrates the applications or services

under attack between VMs. 

.3. User behavior 

The shuffle based MTD method periodically reconfigures the

etwork system or migrates the compromised VMs, which may in-

roduce a costly overhead to legitimate users and cause a back-

og of service requests. Different from traditional passive defense,

he overhead incurred by frequent shuffle is significant for the de-

ender to make shuffling decisions. Meanwhile, high service la-

ency or interruption during the whole shuffle process also forces

sers to choose other servers, which may lead to system overloads.

ence, it is essential to take the user behavior into consideration

nd we assume that the users have the following capabilities: 

• Users can not know the behavior and decisions of the attacker

and the defender. 
• Users do not possess the defense skills and only care about the

service state and system performance. 
• Users would choose another one if the service delay exceeds

their expected threshold value or an interruption happens. 

.4. Objective 

The objective of this paper about trilateral cost-effective shuf-

ing MTD method is to investigate the optimal way for a cyber

efender to make decisions, while taking into account the shuf-

ing/attack cost, effectiveness and service overhead among three

arties, including the defender, the attacker and users. It is im-

ortant to maximize the effectiveness and minimize the shuffling

ost and users’ overhead, while restricting the attacker’s payoff and

orcing them to terminate the attack. Moreover, it is possible for a

efender to endure risks without shuffling, if the shuffling cost is

igh or the shuffle may cause service interruption while the effec-

iveness is low. We seek to examine what is the best way to make

he shuffling decision and how to reach the best trade-off between

ost and effectiveness. 

. MTD Game model 

As discussed in Zhuang et al. (2014) , one of the essential MTD

roblems is adaptation selection problem, also known as ”how to

dapt”. However, a major drawback of many MTDs is that they only

eek the adaptation of improving the effectiveness of the protected

ystem, which may introduce the neglection of the adaptation time

nd costs. There could be multiple sequence of actions that could

ead to the same system state, and the complex adaptations may

ot perform better than simple actions in some cases. Therefore,

he strategy would require to take constraints such as time and

osts into consideration, and the defender should make the best

ecision at each time in order to optimize both the effectiveness

nd cost of MTD. 

In this sequential game, the defender adopts an MTD strategy

y migrating the resource across the network to make it difficult

or the attacker to identify the real location of the resource, while

he attacker may observe the defender’s actions by monitoring net-

ork traffic. Knowing this strategy (but not its realization), the at-

acker then determines against which VM to conduct DDoS attacks

nd which IP address to choose. The defender can detect the oc-

urrence of a DDoS attack and partially obtain the attacker’s ac-

ions by observation, while users may take actions including quit-

ing current client and turning to another one when the service

elay is high. Thus, the trilateral game in this paper is incoordinate

n which the attacker and the defender play their best strategy to

ct against each other, and users could not understand the behav-

ors of the other two players and only make decisions according to
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Algorithm 1 State transition function (STF). 

Input: 

The system state at time step t , S t ; 

The observation by attacker at time step t , O t ; 

The defender action at time step t + 1 , D t+1 ; 

The attacker action at time step t + 1 , A t+1 ; 

The user action at time step t + 1 , U t+1 ; 

Output: 

The system state probability distribution at time step t + 1 , S t+1 

with probability p; 

1: if O t (v ) ⊆ S t (v ) = 0 then 

2: A t+1 (v ) ← 1 ; 

3: if v ∈ D t+1 (v ) ∩ v / ∈ U t+1 (v ) then 

4: S t+1 (v ) ← 0 ; 

5: else 

6: with probability p(v ) , S t+1 (v ) ← 1 ; 

7: with probability p(v ′ ) , S t+1 (v ′ ) ← 1 ; 

8: end if 

9: else 

10: S t+1 (v ) ← S t (v ) ; 
11: if v ∈ D t+1 (v ) ∩ v ∈ A t+1 (v ) ∩ v / ∈ U t+1 (v ) then 

12: S t+1 (v ) ← 0 ; 

13: else 

14: if v / ∈ D t+1 (v ) ∩ v ∈ A t+1 (v ) then 

15: with probability p(v ) , S t+1 (v ) ← 1 ; 

16: else 

17: for v / ∈ D t+1 (v ) ∩ v / ∈ A t+1 (v ) do 

18: with probability p(v ′ , v ) , S t+1 (v ) ← 1 ; 

19: end for 

20: end if 

21: with probability p(v ′ ) , S t+1 (v ′ ) ← 1 ; 

22: end if 

23: end if 

24: return S t+1 with probability distribution p 
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he service state. Likewise, the cost of each player would be gener-

ted from actions they take, while the user could not possess any

ersonal reward due to passive participation in the trilateral game.

efinition 1. S represents a finite set of states, including all possi-

le attack surfaces that the protected system could experience and

et S t ( v ) be the state of the specific VM v at the time step t , where

 ∈ { 0 , . . . , T } and T is the time horizon of the game. In detail, there

re two possible values for every S t ( v ), where S t (v ) = 0 represents

 secure VM whereas S t (v ) = 1 means this VM is under DDoS at-

ack at this time. 

efinition 2. O represents the status of the protected system by

ttacker’s observation. Likewise, O t ( v ) represents the state of the

bserved VM v at the time step t , and it shares the same value as

 t ( v ) can take. However, different from the defender’s global per-

pective of the protected system, we assume that the attacker can

btain the state information of target VM by some methods (e.g.

onitoring the traffic). Since the attacker may not explore all VMs

t one time, O t only contains the status of partial VMs, which can

e represented as O t ⊆S t . 

efinition 3. A is the finite set of actions that all players need

o take so as to maximize their perspective payoffs during the

ame. It consists of < A, D, U, t > , which is attacker actions,

efender actions, user actions and time step t . Since players

ake actions in the process of the trilateral game, their actions

uring the time steps of the game can be presented as A =
 

(A 0 , D 0 , U 0 ) , (A 1 , D 1 , U 1 ) , . . . , (A T , D T , U T ) } . A t ( v ) represents the set

f attacker actions on the VM v at time step t , such as sniffing,

canning or striking a VM. Likewise, D t ( v ) and U t ( v ) separately rep-

esent the sets of actions applied on VM v that defender and user

ake at time step t . In addition, A t (v ) /D t (v ) /U t (v ) = 0 represents

hat they have no action, otherwise they have done at least one

hing on the target VM when A t (v ) /D t (v ) /U t (v ) = 1 . 

efinition 4. f A/D/U 
E 

(v ) is an effectiveness function that deter-

ines the effectiveness value E for different game players that they

an obtain according to their actions on the VM v and the states of

he VM before and after the specific action. It can be represented

s f A/D/U 
E 

(v ) : S × A/D/U × S → E, where A / D / U is the set of actions

hat attacker/defender/user takes in the game. 

efinition 5. f A/D/U 
C 

(v ) is a cost function that maps an action on

M v to a cost value C for the game players. It can be repre-

ented as f A/D/U 
C 

(v ) : A/D/U → C, and similarly, A / D / U separately

epresents a set of actions that different game players can take. 

.1. Game process 

At the beginning of the game, S 0 , A 0 , D 0 and U 0 need to be

nitialized with ∅ . Based on our assumption, the defender is fully

ware of system state at every time step, whereas the attacker only

nows the state O t through observation. Thus, we also set O 0 = ∅ .

n addition, as discussed in Section 3.2 , the defender may need to

nalyze the system to obtain the subsequent states when the re-

onnaissance is in progress, but can acquire the information about

he occurrence of a DDoS attack in a short time. 

At each time step t + 1 ∈ { 1 , . . . , T } , the attacker can choose any

M v ∈ V to conduct a DDoS attack with a success probability p ( v ),

nd p ( v, v ′ ) from VM v to v ′ if the attacker has taken control of

 . Simultaneously, the defender decides which VMs to shuffle to

revent the attacker from further intruding, and users may suffer

rom high service delay due to shuffles. 

After the initialization, the game proceeds in discrete time

teps, t + 1 ∈ { 1 , . . . , T } , with both the attacker and the defender

ware of the current time. As a special participator in the trilat-
ral game, the user takes actions without knowing other players’

ehaviors, and may choose to stay on current VM if the service is

till available. The following sequence of game events among three

layers occurs at each time step t + 1 . 

(1) The defender observes S t , while the attacker observes O t 

ased on the state of the protected system. 

(2) The defender and attacker select their actions A t+1 and D t+1 

ccording to their respective strategies. 

(3) The user takes an action U t+1 based on the performance

f system service after other players’ strategies have been imple-

ented. 

(4) The system transits to its next state S t+1 according to the

ransition function ( Algorithm 1 ). 

(5) All players evaluate their rewards (the user does not possess

ny reward) and costs for the time step, respectively. 

(6) All players enter the next time step unless the time step T

as arrived. 

In the STF ( Algorithm 1 ), Line 1 judges whether the secure VM

as been monitored by the attacker and attack actions at next time

re given in Line 2. Then, MTD will actually work in Line 4 if

he defender shuffles these target VMs while users keep access to

hem, otherwise, there is a probability that the VM will crash and

ven the attack may spread to other VMs, which can be seen in

ine 6 and Line 7. Moreover, if there exists no observation or sev-

ral VMs have already been under DDoS attacks, we set the system

tate unchanged for the next time step in Line 10, and a previ-

us judgement has been set in Line 11. Therefore, Line 12 indicates

hat the VMs can be well protected when the shuffling-based MTD

as been deployed on them. On the contrary, they will be at a risk
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without MTD mechanisms, which is shown in Line 15. Even for the

VM that both the defender and attacker ignore, we assume that

there may also be a system breakdown caused by another VM in

Line 18, or by itself in Line 21. Finally, the system state probability

distribution at time step t + 1 , including status information of all

individual VMs, is returned in Line 24. 

4.2. Game payoff

As discussed in Section 4.1 , S t is a system state at time step t ,

when the attacker plays A t , the defender plays D t , the user plays

U t , and the previous system state is S t−1 . Moreover, effectiveness

and cost functions have directly relative to system states and play-

ers’ actions according to their definitions. In order to simplify the

operation of them, therefore, we denote H t by the game history,

which can be defined as follows: 

Definition 6. H is a finite set which represents the history of the

game process, including the system states S of all VMs and play-

ers’ actions A at different time steps. Since the time horizon of the

game is T , let H t be the game history ranging from initiation to the

time step t , which can be presented as H t = { (S 0 , A 0 ) , ..., (S t , A t ) } ,
where t ∈ { 0 , . . . , T } . 

After all players have taken actions in the game, each of them

will get either a negative or a positive return (the user could only

obtain a negative return because of shuffle overheads). It is the

quantitative assessment of each player’s action which represents

the game payoff. In traditional MTD, both the defender and the at-

tacker need to take the payoff into consideration when they make

defense or attack decisions. However, for a trilateral MTD game,

the defender not only takes the defense payoff into account, but

also needs to give a full consideration to the user’s overhead. Each

player then receives a payoff function and acts to increase their

own expected payoffs. Meanwhile, the participant of the third side

will greatly expand the solution space of the game, so that the tri-

lateral game is more complex than the traditional interaction be-

tween the defender and the attacker. 

With respect to H t , the players’ payoff values of two objectives,

which include goal effectiveness values (the effectiveness value

could be 0 for the user) and action costs, can be separately rep-

resented as follows: 

P d t+1 = E d (H t+1 ) − C d (H t+1 ) (1a)

P a t+1 = E a (H t+1 ) − C a (H t+1 ) (1b)

P u t+1 = −C u (H t+1 ) (1c)

where P d 
t+1 

, P a 
t+1 

, and P u 
t+1 

are the payoff values of different

game players’ actions at time step t , and E and C separately rep-

resent the effectiveness and cost functions that are defined in

Definition 4 and 5 . 

In Eqs. (1a) and (1b) , since the defender and attacker may shuf-

fle or strike several VMs at one time, and the evaluation of pay-

offs relies on the system states before and after taking actions,

the payoff values for them should be calculated at time step t + 1

with the game history H t+1 . Although the user’s payoff value is

still calculated based on H t+1 , there is a significant difference that

Eq. (1c) only contains the cost function. Common users passively

participate in the trilateral game and focus on the QoS rather than

the system security, therefore, their actions bring no effectiveness

to the protected system during the game process and make P u 
t+1 

always a negative number. 
.3. Game strategy 

As discussed above, a strategy for the game players is a policy

y which the player chooses when to execute its actions on what

Ms, as a function of its game history H T and the current time.

owever, the space of available game strategies is vast even with a

ingle action type. In order to avoid direct exploration to the strat-

gy space and analyze the game process more meticulously, we

herefore focus on heuristic strategies that are defined by regular

tructures and patterns of behavior over time. We select a set of

uch strategies through an iterative process of strategy exploration

nd game analysis, and systematically depict actions of all players

uring the game process. Heuristic strategies in MTD can be di-

ided into three types: time-based, event-based and payoff-based. 

Time-based strategies, also known as periodic strategies, are

enerated deterministically during a specific time interval, or prob-

bilistically according to a renewal process. For example, the at-

acker periodically scans and probes the attack surface to obtain

he critical information about the target system. Strategies trig-

ered by events may apply actions to the VM based on observa-

ions of this VM, or a combination of observations across the pro-

ected system. For instance, the user chooses another VM owing to

he service interruption of the required VM. Due to the passivity

f common users, payoff-based strategies only exist between the

efender and the attacker, and usually occur in the end of current

ime step. The defender and the attacker may evaluate their pay-

ffs of actions during this time step, and make action decisions

which VM to shuffle or attack) for the coming time step. 

Since the attacker is rational and the interaction among three

layers is more complex, we therefore focus on payoff-based

trategies to describe the heuristic selection strategies of the de-

ender and the attacker. In addition, although the user’s payoff can

e calculated by the Eq. (1c) , users themselves would not pay close

ttention to the payoffs but take actions due to sudden events such

s high service latency or interruption. In order to make the user’s

trategies conform to the actual situation, event-based heuristic

trategies would be considered to depict the user’s actions during

he trilateral game. 

.3.1. Attacker strategy 

We consider two forms of heuristic attacker strategy defined by

he payoff-based selection strategies. For the attackers, at time step

 + 1 , based on O t , they need to consider only VM v ∈ V that can

hange the target system state at time step t + 1 . As mentioned

n the Section 4.1 , in our game, the attacker only knows the initial

ystem state S 0 , where O 0 (v ) = S 0 (v ) = 0 for each v ∈ V . Hence, we

enote the potential attack target at time step t + 1 by α( O t ) which

epresents this set of VMs and consists of two parts as follows: 

(1) Target on VM v directly to launch an attack. 

(2) Target on another VM v ′ with probability to reach v . 

Based on the two parts of VMs discussed above, we obtain

( O t ) defined as follows: 

(O t ) = { v ∈ V | O t (v ) = 0 } 
∪ 

{
v ′ ∈ V | O t (v ′ ) = 0 , p(v ′ , v ) > 0 

}
(2)

Since the attacker is rational in our assumption, the attacker se-

ects heuristic strategies based on potential assessment of the pay-

ff with α( O t ). Intuitively, the value of an attack payoff quantita-

ively represents what the attacker can obtain by this attack at the

ime step. Different from the game payoff calculated in the end of

ach time step, the potential payoff is considered as an expected

eturn for the next time step and a guidance for the following

ame strategy. 

The main idea of this payoff-based game strategy is to choose

he attack target by which the attacker’s potential payoff could be
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aximized based on previous system state at each time step. How-

ver, due to lack of knowledge about the defender’s action at this

ime step, the potential payoff the attacker calculates is biased for

heir unilateral action. 

.3.2. Defender strategy 

Among the payoff-based strategies we also explore two differ-

nt criteria for the selection of protected VMs. Since the defenders

ould not fully understand the true system states at each time step,

t is crucial for them to reason through the possible system states

ased on their observations before committing to a defensive ac-

ion. 

The defender needs to take both their observation and their as-

umptions about the attacker strategy into consideration to form

n understanding of the current system state. Similarly, we denote

y β( S t ) the potential defend target at time t + 1 as follows: 

(1)Target on VM v according to the system state S t from the

efender’s observation. 

(2)Target on VM v which is not in D t . 

According to the above analysis, we obtain β( S t ) defined as fol-

ows: 

(S t ) = { v ∈ V | S t (v ) = 1 } 
∪ { v ∈ V | S t (v ) = 0 ∩ v / ∈ D t (v ) } (3) 

Meanwhile, before making decisions, rational defenders also

eed to assess the potential game payoffs of imminent actions

ith β( S t ). The potential assessment of the game payoff for the

efenders represents the quality of the strategy to fight against at-

ackers’ malicious actions for the next time step. Essentially, from

he defenders’ point of view, the higher the value of the defense

ayoff is, the safer the protected system will be. 

.3.3. User strategy 

As special participators in the trilateral game, common users

re considered to select strategies that generate actions based on

he service performance and quality when accessing the system.

s discussed in Section 3.3 , users can not acquire the behavior and

ecisions of the attacker and the defender, and only pay attention

o the service state and system performance. Different from the de-

ender and the attacker selecting payoff-based heuristic strategies,

sers take actions along with performance fluctuations caused by

ystem events, rather than evaluating their payoffs to make deci-

ions. Considering that users pay more attention to service quality

nd other performance factors, we explore two different types of

euristic strategies at time step t by δ( S t ) for the user as follows: 

(1)Keep the connection to the current VM v that provides re-

uired service. 

(2)Turn to another online VM v ′ that provides the same service.

Therefore, we also conclude the definition of δ( S t ) as follows: 

(S t ) = 

{
δ(S t−1 ) if 0 � t t < T 

v ′ ∈ V \ δ(S t−1 ) else 
(4) 

here t t represents the time overhead at time step t induced by

he attacker and defender, and T is the thresholding that common

sers can endure during their access to the system services. 

The event-based strategies require users to make decisions

ased on the occurrence of a particular event, so that users se-

ect strategies at the end of each time step, which means they take

ctions after the other two players have done that. Users would

ontinue current connection with the VM if the system service re-

ains in a good condition. In the face of high service delay or sys-

em interruption, however, they would disconnect current connec-

ion and access another VM on their own initiative. 
. Trilateral game cost-effective shuffling method 

As discussed above, we give the description of the game model

nd describe the game process and game strategies among the

ttacker, the defender and users. However, the game may reach

n equilibrium which is undesirable for the defender. Aiming at

aking the game more beneficial for the defender and users, and

eaching the best trade-off between shuffling cost and defense ef-

ectiveness, we propose a trilateral game cost-effective shuffling

ethod, which consists of threat model and game theory, to adopt

ifferent shuffling types under different conditions. 

.1. MTD shuffling scenario 

Different from traditional static defense scenario, when a ser-

ice or a VM is under DDoS attacks, the MTD defender controls

nd relocates the ports, IPs or VMs in use from extra resources.

evertheless, additional overhead is incurred in the procedure of

everal shuffles, such as consumption of network resources and in-

rement of service delay. Therefore, our goal is to balance the de-

ense effectiveness and the user overhead whereas restricting the

ttacker’s payoff at the same time by the optimal implementation

f a shuffling-based MTD method. 

To increase the applicability of our shuffling method and ex-

ound the details more clearly, we make some assumptions and

ropose the shuffling-based MTD scenario as follows. 

Given : a set of q users and a group of n online VMs with r net-

ork segments and u ports of equal resources for m users, where

 × n = q, r � n 

Output : three sequences of matrices (X 0 , X 1 , . . . , X T ) ,

(Y 0 , Y 1 , . . . , Y T ) , (Z 0 , Z 1 , . . . , Z T ) , where X t ∈ {0, 1} r × n , Y t ∈ {0,

} u × n and Z t ∈ {0, 1} q × n , such that 

n 
 

i =1 

x t i j � 1 j = 1 , . . . , r; (5a)

r 
 

j=1 

x t i j = 1 i = 1 , . . . , n ; (5b)

n 
 

i =1 

y t i j � n j = 1 , . . . , u ; (5c)

n 
 

i =1 

z t i j = 1 j = 1 , . . . , q ; (5d)

q 
 

j=1 

z t i j = m i = 1 , . . . , n ; (5e)

The matrix X 0 denotes the initial IP assignment, and the matri-

es { X t |0 < t ≤ T } represent the IP shuffling decision at time step

 , where binary variable x t 
i j 

indicates that whether the i th VM is

ssigned to j th network segment. Hence, Eq. (5a) states that each

etwork segment owns at least one VM, and Eq. (5b) ensures that

ach VM is assigned to only one network segment. Similarly, the

atrices Y t represent the port shuffling decision at time step t ,

nd y t 
i j 

is a boolean value that indicates that whether the i th VM

s assigned to j th port. Therefore, we can easily get Eq. (5c) which

ndicates that at most n VMs can share the same port number in

his shuffling scenario. Moreover, as the VM migration is the third

huffling mechanism, the matrices Z t denote the overall condition

f VM migration at time step t and the binary variable z t 
i j 

repre-

ents that whether the j th user is assigned to i th VM. Based on

q. (5d) and Eq. (5e) , we can conclude that each user is assigned

o only one VM and each VM can only be allowed to serve m users.
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5.2. MTD shuffling objectives 

Since the goal of moving target defense is to limit the number

of crashed VMs with less defense cost, we quantify the payoff val-

ues of shuffle within T time steps by the difference between the

effectiveness and cost in every time step multiplied by a discount

value γ t , where the discounted value ensures that the defender’s

payoff is decayed over time. The objective function to maximize

the payoff of shuffling is as follows: 

f D =Maximize 

T ∑ 

t+1=1 

γ t 
(
E d (H t+1 ) −C d (H t+1 ) 

)
, where (6a)

E d (H t+1 ) = 

∑ 

v ∈ V 
ST F ( (S t (v ) , H t+1 ) | S t (v ) = 1 ) , and (6b)

 

d (H t+1 ) = 

∑ 

v ∈ D t+1 

( 

w x 

r ∑ 

j=1 

| x t+1 
v j − x t v j | + w y 

u ∑ 

j=1 

| y t+1 
v j − y t v j | 

+ w z 

q ∑ 

j=1 

| z t+1 
v j − z t v j | 

) 

(6c)

For Eq. (6) , H t+1 ⊆ H T and it represents the game history from

initialization to the time step t + 1 . Regarding the defender’s shuf-

fling effectiveness, Eq. (6b) represents the status transition from

time step t to t + 1 . In terms of IP hopping, port hopping and mi-

gration cost in a shuffle, the cost function in Eq. (6c) represents

the cost of shuffling from time step t to t + 1 , where w x , w y , w z

are the weights for different shuffling techniques assigned by the

network operator. 

In contrast, the shuffling-based MTD intends to make it more

difficult for attackers to launch a successful attack and to force

them to quit due to increasing attack cost. Thus, we also quan-

tify the payoff values of an attacker according to the game history

and discounted value, and the objective function to minimize the

attack payoff is as follows: 

f A =Minimize 

T ∑ 

t+1=1 

γ t ( E a (H t+1 ) −C a (H t+1 ) ) , where (7a)

E a (H t+1 ) = 

∑ 

v ∈ V 
ST F ( (S t (v ) , H t+1 ) | S t (v ) = 0 ) , and (7b)

 

a (H t+1 ) = 

∑ 

v / ∈ D t+1 ∩ v / ∈ A t+1 

(w x + w y ) + 

∑ 

v ∈ D t+1 

w z (7c)

As seen in Eq. (7b) and Eq. (7c) , the attacker’s effectiveness

value E a 
t+1 

and cost value C a 
t+1 

respectively represent the reward

obtained from the VM crash and the cost caused during the whole

attack stages. In detail, the effectiveness function of the attacker

indicates that the target VM has been crashed at time step t + 1 .

Moreover, the attacker’s cost value in Eq. (7c) can be divided into

two parts: the cost spends during the scanning and probing stages

and the cost occurs when implementing the attack to the target

VM. Hence, it can be calculated by the number of VMs, ports and

IPs, which follow the strategies of the defender and attacker, using

the assigned weights w x , w y , w z as well. 

Different from the defender and the attacker directly involved

in the game, common users should have got normal and stable ac-

cess to the VM. However, the attacks lead to the target VM crashes

and the defender may shuffle this VM, which takes the service

down for a time. On the one hand, users need to endure the ser-

vice instability caused by the attack. On the other hand, the shuf-

fling defense also prevents users from accessing services within

a short period of time. In addition, if the service delay exceeds

the tolerance limit, some users who are impatient may choose to
ccess another VM before the defender makes a shuffle decision.

herefore, we quantify the cost values of legal users that caused by

he MTD shuffle, and the objective function to minimize the users’

ost is as follows: 

f U = Minimize 

T ∑ 

t+1=1 

C u (H t+1 ) , where (8a)

 

u (H t+1 ) = η

( ∑ 

v ∈ A t+1 

t a + 

∑ 

v ∈ D t+1 

t d 

) 

+ 

∑ 

v ∈ U t+1 

t u (8b)

As discussed in Section 4.2 , the effectiveness value is assigned

o be 0 for users in the game, so we only calculate the cost value

f users in Eq. (8b) . The cost function includes the time when the

ervice delay increases caused by the attack, the service interrup-

ion due to the shuffle, and the waiting time for users to turn to

ther VMs, where t a , t d and t u separately represent the average

verhead induced by each of these actions. It is worth noting that

nly the time caused by attacks and defenses will affect all online

sers on the current VM, and the overhead due to the user’s spon-

aneous behaviors will be borne by the users who have taken ac-

ions. In addition, in an actual scenario, not all users are online at

he same time and unnecessary shuffling costs are generated dur-

ng each time step. In order to decrease the extra costs, we denote

he number of online users in one VM by η to guide the defender

o evaluate users’ overhead and make his decision in a more cost-

ffective manner, where 0 ≤ η ≤ m . 

In our problem, we consider all the effectiveness and cost val-

es from all game players with different weights w 1 , w 2 , and w 3 

ssigned by the network operator. Our objective function finds the

est trade-off as follows. 

Objective : 

aximize w 1 × f D − w 2 × f A − w 3 × f U (9)

.3. Decision problem modeling 

Markov Decision Processes (MDPs) are a popular model for

erformance analysis and system optimization, which provide a

ramework for inferring from the actions of decision making agents

n an environment. Although plenty of research has been made in

he area, there are still many sequential decision problems that are

ot well modelled by MDPs. One important reason for this is that

n most cases of real world, decision problems have multiple objec-

ives cause human action selection is driven by multiple objectives

t the same time. For example, for a computer network we may

ant to maximize performance while minimizing power consump-

ion ( Roijers and Whiteson, 2017 ). The field of multi-objective de-

ision making addresses how to formalize and solve decision prob-

ems with multiple objectives. 

In the following, we exploit Multi-Objective Markov Decision

rocesses (MOMDP) to model the decision problem, which is a

ulti-stage stochastic optimization problem with the objective of

aximizing the defender’s payoff, minimizing users’ overhead and

inimizing the attacker’s payoff. A MOMDP for these three objec-

ives in our case is a tuple ( S, X, π , p, R, γ ), where: 
• S represents a finite set of states, which can be defined the

ame as Definition 1 , and let S t be the state of the system at time

tep t . 
• X represents a finite set of decisions, and let X t be the random

ariable of the decision at time t. 
• π denotes a policy function that maps each state to a decision

ith the probability p[ X t = x | S t = s ] , where x ∈ X, s ∈ S . 
• p denotes a state transition function that maps a decision and

elated states to a probability, which can be calculated with Al-

orithm 1, and let p x 
ss ′ = p[ S t+1 = s ′ | S t = s, X t = x ] , where x ∈ X, s,

 

′ ∈ S . 
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Algorithm 2 Trilateral game cost-effective shuffling algorithm 

(TCS). 

Input: 

The VM states at time step t , { S t (v 1 ) , S t (v 2 ) , . . . S t (v n ) } ; 
A binary r × n -matrix X t ; 

A binary u × n -matrix Y t ; 

A binary q × n -matrix Z t ; 

The number of online users in each VM at time step t , 

{ ηt (v 1 ) , ηt (v 2 ) , . . . ηt (v n ) } ; 
Output: 

A binary r × n -matrix X t+1 ; 

A binary u × n -matrix Y t+1 ; 

A binary q × n -matrix Z t+1 ; 

1: for S t (v i ) = 1 , 1 � i � n do 

2: if ηt (v i ) = 0 then 

3: Set 
r ∑ 

j=1 

x t+1 
i, j 

= 0 , 
u ∑ 

j=1 

y t+1 
i, j 

= 0 , 
q ∑ 

j=1 

z t+1 
i, j 

= 0 ; 

4: else 

5: if 0 < ηt (v i ) � [ m 

2 ] then 

6: Randomly set x t+1 
i, j 

, y t+1 
i, j 

; 

7: if Exist 0 < ηt (v i ′ ) � [ m 

2 ] and S t (v i ′ ) = 0 then 

8: Set 
q ∑ 

j=1 

z t+1 
i ′ , j 

= ηt (v i ) ; 

9: else 

10: for S t (v i ′ ) = 0 , 1 � i ′ � n do 

11: Set 
n ∑ 

i ′ =1 

q ∑ 

j=1 

z t+1 
i ′ , j 

= ηt (v i ) ; 

12: end for 

13: end if 

14: else 

15: Set x t+1 
i, j 

∩ x t 
i, j 

=0 , y t+1 
i, j 

∩ y t 
i, j 

=0 , z t+1 
i, j 

= z t 
i, j 

; 

16: end if 

17: end if 

18: end for 

19: return all x t+1 
i, j 

∈ X t+1 , y 
t+1 
i, j 

∈ Y t+1 , z 
t+1 
i, j 

∈ Z t+1 
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• R is a reward function that maps a state and a decision to

 reward vector of l dimensions with a decision distribution of π ,

here l represents the number of objectives. 
• γ is the discount factor, and Let γ k ∈ (0, 1] be the discount

actor of the k th objective. 

In our problem, a policy is a strategy that decides the proba-

ility distribution of the solutions based on the state of the pro-

ected system at time step t . Solving the problem means finding

he policy π ∗ that maximizes the total expected discounted reward

alue. Although many approaches have been studied, the simplest

nd most general of them is value iteration, which works very well

n practice for MDPs. The flexibility of value iteration ( Ashok et al.,

017 ) allows for several improvements and adaptations, further in-

reasing its performance and accelerating processing of very large

DPs. To find the optimal shuffling strategy, thus we solve the fol-

owing value function based on value iteration. 

 

π
t+1 ,k (s ) = 

∑ 

x ∈ X 
π [ x | s ] (R 

π
k (s, x ) + γk 

∑ 

s ′ ∈ S 
p x ss ′ E [ V 

π
t,k (s ′ )] 

)
(10a)

 

π
t+1 (s ) = max 

l ∑ 

k =1 

w k V 

π
t+1 ,k (s ) (10b)

In the value function, V π
t+1 ,k 

(s ) represents the expected cumula-

ive reward for the k th objective according to the policy π and the

tate s after t time steps. Then, V π
t+1 

(s ) sums up the values of all

bjectives with different weights, where 
l ∑ 

k =1 

w k = 1 , and l = 3 for

ur problem. In addition, all game players’ decisions follows the

trategies described in Section 4.3 , and especially, the defender’s

huffling decisions must be constrained by Eqs. (5a) to (5e) . Fi-

ally, once the best policy π ∗ has been obtained, we can deduce

he transition probability of the state, and then calculate the re-

ard values of three objectives by Eqs. (6a) , (7a) , and (8a) . 

.4. Trilateral game cost-effective shuffling algorithm 

Although easy to implement, value iteration can be slow to con-

erge in some cases. To shuffle more efficiently and accelerate the

olution, in the following, we first present a novel trilateral game

ost-effective shuffling algorithm (TCS) to consider the cost and ef-

ectiveness of shuffling, with the three objectives of maximizing

he payoff that the defender may obtain, minimizing users’ over-

ead and minimizing the payoff which the attacker can get. Specif-

cally, in the initial assignment step, q users, r network segments

nd u ports are randomly assigned to n online VMs in our shuf-

ing scenario, whereas the t th shuffling step iteratively reduces the

umber of the crashed VMs. Afterwards, the system state at time

tep t represents the assignment of users, network segments, ports

n the system and the condition of crashed VMs through state tran-

ition function ( Algorithm 1 ). 

Thereout, TCS ( Algorithm 2 ) is proposed to significantly re-

uce the unnecessary cost and is executed after the initial as-

ignment at each time step. In TCS, Line 1 has a holistic view of

he crashed VMs based on the current system state. Then, Line 2

udges whether the current VM has online users and no shuffling

ecisions are given in Line 3 if there is no user. Moreover, if there

xist online users, we randomly set the new network segment and

orts for the next time step in Line 6 and a previous threshold has

een set in Line 7. Line 8 indicates that we have to migrate this

art of users to another secure VM if there are few online users,

nd we have to relocate them to several VMs in Line 11 when the

arget VMs have no enough capacity. On the contrary, we turn the

etwork segment and ports to absolutely different ones rather than

M migration in Line 15 if the average number of online users ex-
eeds the half of maximum capacity. Finally, shuffling decisions of

ll VMs for the next time step are returned in Line 19. 

In addition, the transition probability of TCS p T CS 
ss ′ is represented

s the STF function in Algorithm 1 , where the value is correlated

o the system state and players’ actions, especially ( m, n, q, r, u ) in

his shuffling scenario. The rewarding values R T CS 
1 

, R T CS 
2 

, and R T CS 
3 

of

ach state s with policy TCS represent the payoffs of each shuffle

or different players in state s as follows: 

 

T CS 
1 (s ) = 

∑ 

s ′ ∈ S 
p T CS 

ss ′ | s −s ′ | −T CS(s )(w x r + w y u + w z q ) (11a)

 

T CS 
2 (s ) = −( 

∑ 

s ′ ∈ S 
p T CS 

ss ′ | s −s ′ | − n (1 − s )(w x + w y ) −sw z ) (11b)

 

T CS 
3 (s ) = −

∑ 

s ′ ∈ S 
p T CS 

ss ′ [ η(t a + t d ) + t u ] (11c)

here the rewarding functions of the attacker and user in

qs. (11b) and (11c) are negative due to the objectives of minimiza-

ion. Given the transition probability and the rewarding functions,

herefore, the cumulation of respective rewards with the policy TCS

fter t + 1 shuffles can be calculated as follows: 

 

T CS 
t+1 ,k (s ) = R 

T CS 
k (s ) + γk 

∑ 

s ′ ∈ S 
p T CS 

ss ′ V 

T CS 
t,k (s ′ ) (12)

here V T CS 
t+1 ,k 

(s ) = R T CS 
k 

(s ) when t = 0 , and γ k represents a dis-

ount value where γ1 = γ2 = γ (described in Eqs. (6a) and (7a) )

nd γ = 1 . Therefore, according to the proposed TCS algorithm
3 
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and above rewarding and value functions, we can then solve the

optimal decision problem efficiently. 

6. Evaluations and results 

In this section, we evaluate and analyze the effectiveness and

cost of the proposed TCS algorithm against DDoS attacks in sim-

ulation and experiment. First, we describe the simulation settings

and compare our TCS algorithm with other existing shuffling al-

gorithms. Then we introduce the experimental settings and imple-

mentation of the shuffling scenario in full. Finally, we measure the

cost and effectiveness of our proposed TCS algorithm in our shuf-

fling scenario with comparisons to some specific strategies. 

6.1. Simulation 

Software-defined network (SDN) ( Yan et al., 2015 ) can provide

flexible infrastructure for developing and deploying MTD mech-

anisms efficiently by decoupling the control plane and the data

plane in the network. In SDN, the network controller monitors and

controls the entire network from a central vantage point, and dif-

ferent functions of switches distributed in the network can be de-

fined accurately and synchronously. To investigate the effectiveness

of our proposed TCS algorithm and compare it with other meth-

ods, such as RRT (Renewal Reward Theory) ( Wang et al., 2016 ),

CSA (Cost-effective Shuffling Algorithm) ( Lin et al., 2017 ), and CES

(Cost-Effective Shuffling Method) ( Zhou et al., 2019 ), we simulate

a network environment by Mininet, which can create multiple in-

stances of OpenFlow switches and hosts as a virtual SDN testbed.

We also implement all these algorithms on an OpenFlow controller

called OpenDayLight ( OpenDayLight, 2020 ) that acts as the central

authority to manage the network flexibly. The simulations are all

performed on a 3.6 GHz Intel Core CPU with 32GB of RAM run-

ning 64-bit Ubuntu 16.04 operating system. 

First, to find out the whole system state transition proba-

bility, we independently execute Algorithm 1 10,0 0 0 times with

pre-defined parameters ( m, n, q, r, u ), where m = 20 , n = 50 , q =
10 0 0 , r = 20 , u = 100 . Afterward, we compare the expected value

functions of TCS with that of RRT, CSA and CES in terms of differ-

ent players’ payoffs. More specifically, the sum cost of three kinds

of defense mechanisms is set to 1, where the weights for IP hop-

ping, port hopping and migration shuffling are separately set to

0.2, 0.1 and 0.7. Similarly, the weights for the defender payoff, at-

tacker payoff, and user cost are set to 0.6, 0.3 and 0.1 here. In sim-

ulation, the reward values of successfully defending against an at-

tack or attacking to cause the VM to crash are both calculated by

1, and the discount value γ is set to 0.9. In addition, to calculate

the user cost, the average overhead t d , t a , and t u induced by each

player’s action are set to 1.5, 2, and 1 for simplicity. Note that RRT

is indifferent to the online users of the VMs, and CSA randomly se-

lects half of the users to migrate in a single shuffle. Although CES

pays attention to the number of online users, it does not calcu-

late user payoffs separately but merges into the defensive payoffs

together. 

For a more comprehensive comparison among these algorithms,

the pseudo codes from RRT, CSA and CES are utilized to make MTD

shuffles in our simulation, and all payoff values are calculated by

functions in this paper. Meanwhile, in order to make a fair com-

parison, we only calculate the VM migration cost for RRT and CSA

algorithms which lack the other two MTD mechanisms. Specially,

there is not a third-party participant for the shuffling scenarios of

RRT, CSA, and CES, which means common users would not take

actions initiatively and their overhead would be only affected by

the defender and attacker. Therefore, user strategies in this paper

cannot apply to them, and t u should be set to 0 for these three

algorithms. 
Figs. 1 and 2 first compare the these algorithms with different

ime step and different number of average online users in one VM,

espectively. In Fig. 1 , 10 online users are initially involved within

ach VM in the overall shuffling scheme, and the system is al-

owed to allocate at most 50 VMs for shuffling. In Fig. 2 , there

re 0 to 20 online users within one VM at time step 10, when

he cumulative values of all the players’ payoffs have levelled off.

ig. 1 demonstrates that the TCS approach performs better when

he time step increases whereas Fig. 2 manifests that the difficulty

f limiting the attacker’s payoff has increased by MTD shuffling ap-

roach when there are more online users accessing the protected

ystem. Figs. 1 (a) and 2 (a) present the theoretical defense payoffs

f shuffling, whereas Figs. 1 (b) and 2 (b) show the payoffs that the

ttacker can obtain in the game. In addition, Figs. 1 (c) and 2 (c)

emonstrate the payoffs of common users that passively partici-

ate in the trilateral game, where the negative values indicate that

sers are always affected by service performance when the MTD

huffle happens. 

For the cumulative defense payoff, Fig. 1 (a) indicates that more

ayoff is gained when the time step increases in the beginning and

t declines after 4 or 5 time steps. In detail, it takes costs for the

efender to make every MTD shuffle, however, it could not lead to

ore effectiveness when the system has reached a stable state. As

een in Fig. 2 (a), it is more difficult to relocate more users, thus

here is no linear increase in the defense payoff with the growth

f online users. Meanwhile, since each algorithm gives priority to

he payoff of defender, there are similar results on the defense pay-

ffs when different algorithms are deployed. Nevertheless, the pro-

osed TCS algorithm still outperforms other methods in terms of

efense payoff for the given time step. For the payoff of the at-

acker, Fig. 1 (b) indicates that attack payoff increases in the begin-

ing of the game but soon decays when the shuffling mechanisms

tart to work. On the contrary, it can be seen from Fig. 2 (b) that

he effect of the attack will be magnified as more users demand

he service, thus the attack payoff almost linearly increases when

ore users get access to the VMs. Even so, our method still strives

o protect the system, thereby effectively limiting the attack pay-

ffs when compared to other algorithms. As shown in Fig. 1 (c), the

ser payoff declines as the game progresses, and will tend to a

table value at the time horizon. When more users accessing to

he system, Fig. 2 (c) indicates that more users will suffer from the

ther two players’ actions and their payoffs decline almost linearly.

owever, taking the impact of the shuffling on users into account

nd treating users as a member of the trilateral game, our pro-

osed algorithm TCS outperforms RRT, CSA and CES in terms of

he user payoff. 

The performance of shuffling mechanisms in TCS outperforms

hat in RRT, CSA and CES due to three reasons. First, the state tran-

ition probability of TCS fully takes the correlation between states

nto consideration, while there is no detailed explanations of tran-

ition probability in RRT and CSA, and CES only focuses on the

tate of security resources. Second, TCS can utilize three kinds of

efense mechanism, whereas RRT and CSA can only utilize one,

nd CES pays no attention to user payoff over the MTD shuffling.

n detail, the underlying reason is because only utilizing migrations

ight introduce more cost if the system state is not so bad, while

CS is capable of determining the shuffling mechanism based on

he game history. Finally, other methods do not fully consider the

mpact of the MTD defense mechanisms on users, whereas TCS

uilds a trilateral game which involves users as special partici-

ants, and takes into account the users’ overhead of shuffling to

ake the effectiveness of defense and user overhead optimal. 

Since RRT and CSA were proposed by other researchers, there

ight be some limitations in this comparison, for example, pa-

ameter setting of the algorithm in this scenario and many other

xperimental factors are all unknown for the existing techniques.
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Fig. 1. Comparison of TCS, RRT, CSA and CES in different players’ payoffs at different time steps. 

Fig. 2. Comparison of TCS, RRT, CSA and CES in different players’ payoffs with different number of average online users in one VM at time step 10. 

Fig. 3. Implementation of the shuffling scenario in an experimental SDN network. 

H  

a  

2  

a

6

 

t  

p  

a  

3  

e

 

u  

w  

t  

a  

t  

f  

s  

p  

v  

t  

S  

i  
owever, we have tried to make as fair a comparison as possible,

nd according to the comparison results indicated in Figs. 1 and

 , our proposed TCS method still provides a powerful competitive

dvantage in the cost-effective MTD shuffling. 

.2. Experimental settings 

We implement the shuffling scenario in an experimental SDN

estbed, which is shown in Fig. 3 . The testbed that we use for ex-

erimental analysis is composed of 5 Dell PowerEdge R720 servers

nd a Dell PowerEdge R430 server. Each Dell PowerEdge R720 has

2 GB of RAM, 4 TB hard disk storage and 12 core CPU. Dell Pow-

rEdge R430 has 16 GB RAM, 1 TB disk storage and 4 core CPU. 
One single server is employed to construct the control platform,

sing OpenDayLight (ODL) based SDN controller and PHP Laravel

eb framework as front-end. ODL is an open source SDN con-

roller for shuffling rule installations and we deploy our algorithm

s an MTD strategy selector module on it. Meanwhile, for the vir-

ual network deployment, we utilize OpenStack ( OpenStack, 2020 )

or computing and network resource provisioning on the other five

ervers. OpenStack is a cloud operating system that controls large

ools of compute, storage, and networking resources, it provides a

irtual layer on physical servers which decouples hardware from

he workload. In addition, the VMs are managed and controlled by

DN controller via Open vSwitch (OVS) ( OpenvSwitch, 2020 ). OVS

s heavily used in cloud computing frameworks, and is designed to
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Fig. 4. CPU load of SDN controller under different shuffling strategies. 
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enable massive network automation through programmatic exten-

sion, while still supporting standard management interfaces and

protocols. 

In the implementation, we first create 50 VMs which are

equally allocated to five servers, and each VM is assigned for at

most 20 users with equal CPU and memory. In addition, the 50

VMs are organized with different IP and ports, the attacker can

overload the VMs through DDoS attack tools and the defender can

only create a replica for each VM under certain circumstances. 

6.3. Results 

First, we implement our TCS algorithm and execute the pro-

gram as an application on the control platform. Then, we com-

pare our trilateral game cost-effective shuffling method with other

strategy selection methods, including static strategy, deterministic

pure strategy, and random strategy in terms of overhead and per-

formance against DDoS attacks. Finally, detailed experimental re-

sults are followed in Section 6.3.1 –6.3.3 . 

6.3.1. Overhead of SDN controller’s CPU load 

In order to evaluate the processing overhead on the SDN con-

troller consumed by the shuffling strategies, we run these strate-

gies as different modules and evaluate the influence on the SDN

controller, which is shown in Fig. 4 . A static strategy, which does

not modify any network resource over time, makes the CPU load

never exceed 10%. Deterministic pure strategy selects a pure strat-

egy that shuffles all optional VMs and their configurations, which

inevitably results in a higher CPU load of SDN controller ranging

from 31.2% to 45.8%. While a random strategy does not consider

all the network resources, but randomly selects a strategy to shuf-

fle part of them at each time step. Compared to the deterministic

pure strategy, the CPU load is about 18.2%–28.8% when under a

random strategy, and about 22.5%–37.5% under the proposed TCS

algorithm. 

Obviously, the SDN controller under static strategy has the least

CPU load but with the highest risk. In order to keep the protected

system from attacks, the deterministic pure strategy chooses to

shuffle all resources at each time step and thus introduces extra

CPU load inevitably, whereas the random strategy shuffles some of

the protected VMs in the testbed randomly. Although it takes less

load, the effectiveness of the shuffling could not be guaranteed all

the time. However, our approach can find a good balance between

the performance and overhead of the MTD mechanisms according

to the solution to the objective function. The processing overhead
n the SDN controller is in an acceptable level when the TCS al-

orithm has been deployed, which is between that of the random

trategy and deterministic pure strategy. 

.3.2. Evaluation of QoS under DDoS attacks 

Quality of Service (QoS) is commonly used to describe non-

unctional attributes of a service with typical metrics, including

esponse time, throughput, availability, reliability, etc. ( Zhu et al.,

017 ). Ideally, QoS values can be directly specified in Service-Level

greements (SLAs) by service providers. However, due to temporal

nd spatial variation of network service, user-perspective QoS data

ay reflect more individual characteristics ( Luo et al., 2019 ). In

erms of shuffling-based MTD, obtaining QoS information is still a

hallenging issue due to the dynamic and stochastic nature of MTD

echanisms. This dynamic nature is due to the frequent changes

hat may occur in MTD scenarios, whereas stochastic nature is due

o the unpredictable occurrence of these changes. Taking the rela-

ionship between users and services into consideration, in this pa-

er, we mainly take the average time of every online user waiting

or the service recovery as the QoS measure in an MTD shuffling

cenario. Service recovery delay is defined as the time interval be-

ween the moment when the service is unavailable and when a

ser can receive the response for service request again. The aver-

ge service recovery delay d̄ for time step t is formulated by the

ollowing quantitative measure: 

¯
 t = 

n ∑ 

i =1 

ηt (v i ) ∑ 

j=1 

d t (i, j) 

n ∑ 

i =1 

ηt (v i ) 
(13)

here d t ( i, j ) is the delay of the j th user waiting for the i th VM

ecovery, and ηt ( v i ) represents the number of users served by v i at

ime step t . 

We claim that using average values is reasonable, because, first,

everal MTD mechanisms are placed among VMs in this paper,

hich means online users served by different VMs may have sig-

ificantly different values of recovery delay. Second, if compar-

sons were to be made based on every user’s value, the results

ould be biased towards one of the methods in some cases, which

s not reasonable. Therefore, in order to evaluate the QoS under

DoS attacks, we construct a typical DDoS attack tool using hping3

 RGhanti and GM Naik, 2015 ), and carry out two kinds of DDoS at-

acks including SYN (synchronize) flood and UDP (User Datagram

rotocol) flood, where the rate of flood traffic equals 200 Mbps on

ne VM. The experimental results of resisting these typical DDoS

ttacks with different strategies are shown in Fig. 5 . Meanwhile, it

s worth noticing that the result of static strategy (represented as

ed line in Figs. 4, 6 , etc.) is not included in the comparison. Differ-

nt from other strategies in this part of experiment, the failure to

dopt the MTD mechanism will cause a large part of VMs to crash,

esulting in a sharp increase in recovery delay and even complete

ommunication interruption when the service is unreachable for

egitimate users. Even if the service responds to the user’s request

fter a long delay, it cannot be concluded that the service recov-

rs from the attacks, and the average waiting time of static de-

ense cannot be accurately calculated in the experiment. Therefore,

o make a fair comparison of other strategies in terms of service

ecovery delay, we have to exclude the static defense out of Fig. 5 .

In general, the results in Fig. 5 (a) indicate that our approach in

otal requires only 1.34–1.70 s for every online user during SYN

ood, which is an acceptable time for users to wait during the

estart of services. Meanwhile, as the time step increases, there

s a slight decrease on the time consumption of shuffling proce-

ure. Then, we compare the QoS value of TCS with the determin-

stic pure strategy and random strategy. As seen in Fig. 5 (a), the
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Fig. 5. Users’ average time overhead of waiting for service recovery with different strategies. 

Fig. 6. Numbers of crashed VMs under SYN flood with different shuffling strategies. 
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t  
eterministic pure strategy consumes the most waiting time that

xceeds 2 s for every user, because it mobilizes all MTD mecha-

isms and performs a full shuffling at each time step. This may

ause the system service to be unavailable to some degree, thereby

ncreasing the delay and damaging the users’ payoffs. In addition,

he time consumed by the random strategy fluctuates from 1.12 s

o 2.2 s due to its random scheme during the shuffling process. 

Similarly, as seen in Fig. 5 (b), the recovery delay is still more

han 2 s for the deterministic pure strategy during the UDP flood

ttacks, and there is also a random distribution of a legitimate

ser’s waiting time with the random strategy. Different from SYN

ood attacks attempting to consume enough system resources to

ake it unresponsive, UDP flood usually sends a large number of

DP packets to random ports of the target system, forcing it to

end many ICMP (Internet Control Message Protocol) packets, and

ventually leads it to be unreachable. Despite all this, the results

f deterministic pure strategy and random strategy during UDP

ood are almost the same as those under SYN flood attacks, be-

ause all of the strategies generated by these methods have no

ignificant difference between SYN flood and UDP flood. However,

he proposed TCS algorithm will focus more on the use of port

nd IP hopping to resist attacks when developing strategies, rather

han unnecessary VM migration when facing such attacks. Owing

o this, the average recovery delay with TCS during the UDP flood

anges from 1.04 s to 1.16 s, which is obviously lower than the

ther two strategies and guarantees the QoS of the protected sys-

em. 

In summary, our approach reduces the service recovery delay

f nearly one second compared to the deterministic pure strategy,

hile in most cases it is less than the recovery time spent by the

s  
andom strategy, which is attributed to our method that takes full

ccount of user behaviors during the shuffling process and thereby

chieving the highest level of QoS values. 

.3.3. Performance of resisting DDoS attacks 

Finally, to evaluate the capability of our proposed method to

esist DDoS attacks, we reuse the experimental configurations in

ection 6.3.2 to send SYN flood and UDP flood on the protected

Ms with random source IP addresses. In addition, to implement

 more detailed comparison, we set different attack intensity to

imulate different attackers in this part of experiments, where the

aximum attack rate can reach 1Gbps when the attacker floods 5

Ms at one time, and experimental results under several defense

trategies can be seen from Fig. 6 to Fig. 9 . 

It is obvious that the proposed TCS algorithm has a better per-

ormance than other strategies in the ability against DDoS attacks.

s shown in Fig. 6 , no matter how many VMs attackers select to

onduct attacks, the number of crashed VMs increases linearly as

tatic strategy has no ability to resist SYN flood attacks. Meanwhile,

he random strategy causes a surge in the number of VMs that

rash due to lack of analysis on the system state when the tri-

ateral game happens. Once the configuration after single shuffle

till can be reached by the attacker, the MTD shuffle will be invalid

ith costs. Although the deterministic pure strategy can resist the

ttack to a certain extent, it is still weaker than the performance

f TCS especially when the attacker’s ability has increased. In ad-

ition, the deterministic pure strategy may be predicted by the at-

acker, which makes the defender passive in the beginning. In con-

rast, results indicate that TCS can effectively keep the protected

ystem safe when the attacker only floods a VM at each time step,



14 Y. Zhou, G. Cheng and S. Jiang et al. / Computers & Security 97 (2020) 101976 

Fig. 7. Numbers of crashed VMs under UDP flood with different shuffling strategies. 
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and restrict the number of crashed VMs to around 10 even when

the attacker strikes more VMs. 

Fig. 7 indicates the similar results of the crashed VMs during

the UDP flood attacks. It can be seen that the static strategy also

cannot afford to resist UDP flood attacks, and the random strat-

egy still causes a large number of VMs to crash when the game

ends although it is slightly better than static defense. Similarly, the

deterministic pure strategy is able to defend against UDP flood at-

tacks with low attack intensity, and there is a sharp increase in the

number of crashed VMs when the attacker floods more VMs at a

time. Although it is not easy to deal with high-intensity attacks,

the proposed method can effectively guard most VMs of the pro-

tected system regardless of the attack intensity. Furthermore, when

comparing Figs. 6 and 7 , it can be indicated that although the over-

all trend for the number of the crashed VMs is the same, the im-

pact of the SYN flood is obviously greater than the UDP flood. On

one hand, since the size of SYN packets is much smaller than that

of UDP packets, the SYN flood attacker would send more packets

even if the rate of attack traffic is the same as UDP flood. On the

other hand, SYN flood attacks work by consuming enough target

system resources whereas UDP flood attacks target network link

bandwidth, thereby leading more VMs to crash during SYN flood

attacks. Nevertheless, it can be concluded that TCS is more effec-

tive in preventing protected systems from DDoS attacks, and better

at restricting the number of crashed VMs within the limited time

steps. 

To gain a deeper insight into the understanding of the behavior

and performance of different strategies in resisting DDoS attacks,

we use the following key metrics to evaluate the defense, including

packet loss rate and RTT (Round-Trip Time). In detail, packet loss

rate is defined as the rate of lost packets or bytes due to the inter-

action of the legitimate traffic with the attack, or due to collateral

damage from defense. RTT is defined as the interval between when

a request is issued and when a complete response is received from

the destination, which gives a measure of latency. Once the DDoS

attacks last for a while, the queue will be full and the subsequent

packets will be dropped, which causes a substantial increase in the

packet loss rate and RTT. In particular, we report results of these

key performance measures when sending DDoS traffic at different

rates. Fig. 8 shows the performance degradation in terms of packet

loss measured at different rates of attack traffic ranging from 0

to 200 Mbps. It demonstrates the patterns of packet loss rate in

the cases of SYN flood and UDP flood attacks. As it can be seen

from Fig. 8 (a), when the rate of attack traffic is less than 170 Mbps,

packet loss of TCS algorithm is always zero. When the rate of at-

tack traffic becomes higher than 170 Mbps, or even a little, the loss

rate is changed to about 1% and reaches about 12% when the SYN

flood rate equals 200 Mbps. However, the packet loss rates of the

static strategy and random strategy have a huge increase even at a

low SYN flood rate, and are separately changed to about 93% and
3% at 200 Mbps of attack rate. Even though the performance of

he deterministic pure strategy is very close to that of TCS when

he rate of SYN flood is less than 120 Mbps, its highest packet loss

s still about 50%. 

Similarly, Fig. 8 (b) indicates that the packet loss of static strat-

gy under UDP flood also begins to increase when the rate of at-

ack traffic becomes higher than 10 Mbps, and reaches the max-

mum value of 88% at 200 Mbps of attack rate. For the random

trategy and deterministic pure strategy, the highest packet loss

ates are 74% and 29%, respectively. Notably, the proposed TCS al-

orithm outperforms all other methods during UDP flood in terms

f packet loss rate, which is effectively limited to 10% even under

he maximum attack intensity. 

In addition, Fig. 9 exhibits the degree of RTT increase of differ-

nt defense strategies when sending DDoS attacks traffic to the tar-

et server at different rates. In terms of the overall trend, whatever

he kind of DDoS attacks is, the average RTT of all methods shows

 gradual upward trend as the rate of attack traffic increases. As

he Fig. 9 (a) shows, in the case of static defense, the average RTT

ncreases when the rate of attack traffic ranges from 10 Mbps to

10 Mbps. When the rate of attack traffic is higher than 110 Mbps,

he RTT of static defense becomes constant because 200 ms is the

imeout value that we set throughout the experiments. An interest-

ng observation is that random strategy usually has a higher value

f average RTT since it randomly selects one of the MTD mecha-

isms to shuffle the target VM at every time step which may not

verlap with the attacker’s reconnaissance phase. However, this is

ot the case for the deterministic pure strategy. It protects the sys-

em service by all shuffling mechanisms regardless of highly sus-

icious activities, which defends against the SYN flood attacks but

akes RTT affected by unnecessary shuffle. Another important ob-

ervation in Fig. 9 (a) is that the average RTT of TCS algorithm is al-

ays at a low level due to its cost-effective characteristic, and only

ncreases to almost 20 ms when the rate of attack traffic equals

00 Mbps. 

Finally, we also consider another kind of DDoS attack called

DP flood and represent the results in Fig. 9 (b). In this graph, we

an see similar results which are basically due to the defender’s

trategies. Although the overall trend is similar to that of Fig. 9 (a),

he average RTT at the same attack rate is generally lower when

efending against UDP flood. At the same time, the average RTT of

he static strategy dramatically increases from 10 Mbps of the at-

ack rate, however, its highest value of RTT equals 193 ms, which

oes not exceed the preset timeout value. Unlike the static strat-

gy, the random strategy has lower RTT, and floats around 100 ms

ven the attack rate becomes higher than 150 Mbps. Even though

he gap between the deterministic pure strategy and TCS decreases

nder UDP flood attacks, the average RTT is always less than 20 ms

or the TCS case. Hence, we claim that it is reasonable to use the

CS algorithm considering the overall advantages. 
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Fig. 8. Lost packets percentage during DDoS attacks with different strategies. 

Fig. 9. Average RTT during DDoS attacks with different strategies. 
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. Conclusions 

MTD has recently emerged as one of the potentially game-

hanging themes in cyber security. Although the attacker under

raditional static defense has an innate advantage, MTD holds

romise to change the game in favor of the defender. Thus, MTD

as received significant attention to solve cyber security problems

uch as mitigating DDoS attacks. Unfortunately, most such tech-

iques has not adequately demonstrated the rationality of strate-

ies, and in some cases has not considered defense costs when

valuating the utility of MTD strategies. The problem of balancing

he effectiveness and cost associated with the deployment of MTD

echniques has not received sufficient attention, and cost-effective

TD mechanisms are still lacking. 

Our preliminary work ( Zhou et al., 2019 ) provided a first impor-

ant step toward addressing some of these limitations. This paper

ignificantly extended that work by introducing a novel trilateral

ame theory that can include users’ overhead at the same time.

e also presented heuristic game strategies to characterize the be-

avior of attackers, defenders and users, and model the interac-

ion among them with a sequential game. Then, Multi-Objective

arkov Decision Processes are utilized to capture the effects on

he overhead and performance of MTD. Finally, the TCS algorithm

i  
as proposed to seek the best trade-off between cost and effec-

iveness in the shuffling scenario. 

The cost-effectiveness of our approach was evaluated in simula-

ion and outperformed other existing algorithms, such as RRT, CSA

nd CES. In addition, TCS was deployed on an SDN based shuffling

estbed and evaluated in terms of overhead and performance. The

omparison with other strategies showed several key advantages

f the proposed algorithm. First, the lower required CPU and re-

overy delay ensured the feasibility of the method and guaranteed

he quality of service. Second, it is evident that the deployment of

CS algorithm was beneficial for improving overall system security

nd for protecting the system against DDoS attacks effectively. 
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