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Abstract—The objective of this research is to study the 
behavior of IP Network nodes (IP hosts) from the 
prospective of their communication behavior patterns to 
setup hosts’ behavior profiles of the observed IP nodes by 
clustering hosts into clusters of similar communication 
behaviors. The problem of IP address behavior analysis and 
profile establishment is the one that not fully discussed and 
the results achieved are not good enough, there is no 
complete solution yet. There are many potential applications 
of this work, the results of this research will be useful to the 
network management and Network security situation 
awareness in addition to the applications in studying the 
network user behavior. The contribution of this paper 
includes: 1) discussion about the features or host behavior 
communication patterns to be utilized in hosts clustering to 
characterize accurately and efficiently groups of host 
behavior traffic. 2) We presented an algorithm to extract 
most significant IP nodes to be analyzed instead of analyzing 
the complete list of millions of IP nodes that exist in the 
trace. 3) We analyzed IP nodes traffic behavior on relatively 
long periods of traces, which help to extract a more stable 
host’s behavior. While previous studies focus only on host 
behavior for relatively short periods of 5 to 15 minutes, we 
extract host’s behavior patterns over a period of one hour 
which needs big data analysis to provide results in a 
reasonable time. 

 
Index Terms—Computer Networks, Host behavior profiling, 
Network security, traffic profiling. 
 

I. INTRODUCTION 

IP networks Host behavior profiling refers to observing 
measured flow data from Internet backbone and 
extracting information which is representative of the 
communication behavior or usage patterns of the 
observed hosts. It is useful in understanding the behavior 
of the monitored network and in deriving guidelines of 
normal and abnormal activities within that context. 
Profiling can be done at four levels: user level, 
application level, host level, and network level. IP 
Profiling at a large scale faces several challenges like the 
huge number of active hosts observable in the backbone 
traffic flows and the sporadically appearance of the 
observed hosts. Host profiling and clustering aims at 
identifying dominant and persistent hosts behaviors and 
creating groups with similar behaviors, this is very useful 
for many applications of Internet security such as 
Network Security Situational Awareness NSSA, DDoS 
defense, worm and virus detection, botnet detection, etc. 
For example worm infection or any attack on the network 

might cause a sharp change in the host’s behavior, so 
detecting attacks on the network will be easier if we can 
profile hosts behaviors so that sharp changes in hosts’ 
behaviors will be detected. This study is based on 
CERNET backbone data, but the method could be applied 
on general Internet traffic analysis.  

The remaining of this paper is organized as follows: 
Section 2 reviews a number of related works. The data 
sources used in this study are explained in section 3. 
Section 4 presents some essential background and in 
section 5 we presented our methodology. The Selection 
and extraction of communication pattern features is 
explained in section 6 while the results and discussion are 
presented in section 7 then the final conclusion. 

II. RELATED WORKS 

Different researches has appeared for profiling Internet 
traffic for different purposes, detecting network traffic 
anomalies was the main purpose of most of them. Xu 
Kuai et al. [1, 2] presented a methodology for building 
comprehensive behavior profiles of Internet backbone 
traffic in terms of communication patterns of end-hosts 
and services to identify common traffic profiles as well as 
anomalous behavior patterns based on four-dimensional 
feature space consisting of srcIP, dstIP, srcPrt and dstPrt. 
CAI Jun et al. [3]  measures the dynamic changes of host 
communities for the purpose of anomalous detection. Xu 
Kuai et al. [4] characterize the behavior of the significant 
clusters and groups the clusters into classes with distinct 
behavior patterns to automatically discover significant 
behaviors of interest from massive traffic data to help 
network operators in understanding and quickly 
identifying anomalous events with a significant amount 
of traffic. Vanessa F et al. [5] identify anomalous 
behavior where the behavior of a host raises an alert only 
when a group of host profiles with similar behavior 
(cluster of behavior profiles) detect the anomaly, rather 
than just relying on the host’s own behavior profile to 
raise the alert. Application identification was also one of 
the main purposes of these researches such as in 
BLINC[6] which identifies application footprints in 
traffic streams by classifying traffic flows according to 
the applications that generated them. Understanding the 
structure and dynamics of the user behavior networks 
also was an objective of some researches such as the 
work of Jing L et al. [7]  where they analyze the structure 
characters and the community of the user behavior 
networks that connect users with servers across the 
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groups (clusters). Patterns within a valid cluster are more 
similar to each other than they are to a pattern belonging 
to a different cluster. Clustering is an unsupervised 
classification which is different from supervised 
classification in that there are no pre-classified (labeled) 
patterns. In the case of clustering, the problem is to group 
a given collection of unlabeled patterns into meaningful 
clusters. In a sense, labels are associated with clusters 
also, but these category labels are data driven; that is, 
they are obtained solely from the data. Data should be 
prepared for clustering by a sequence of processes like 
Feature selection, Feature extraction, and normalization 
as shown in Figure 2. Feature selection chooses 
distinguishing features from a set of candidates, while 
feature extraction utilizes some transformations to 
generate useful and novel features from the original ones. 
Both are very crucial to the effectiveness of clustering 
applications. 

 
Figure 2. Major steps of host profiling procedure 

DBSCAN[20] Clustering Algorithm: To find a cluster, 
DBSCA starts with an arbitrary point p and retrieves all 
points density-reachable from p. If p is a core point, this 
procedure yields a cluster, otherwise p is a border point 
(noise) and no points are density-reachable from p and 
DBSCAN visits the next point of the database. 

V. METHODOLOGY 

The main purpose to study the behavior of a single IP 
address is to be able to setup a profile of the IP addresses. 
The problem here is how to define the details of these 
profiles and which metrics needed. The content of this 
profile should be selected carefully to help the further 
work. The most important points should be considered 
when building this profile includes the data structure and 
the content of the profile, and how often it should be 
updated. 

Because it is not reasonable to setup a profile for each 
observed IP address, so they are classified. Classification 
or clustering of IP profiles will be based on their network 
traffic behavior to identify the service behind this IP 
address. Individual host’s behaviors could change over 
time but the profile of a legitimate host tends to fall into 
the same category for a moderately long time. Grouping 
hosts into categories is useful to build models of 
legitimate Internet communications. These models will be 
useful in the detection of suspicious changes in the 
backbone traffic, which are usually a sign of an Internet-
wide security problem. An accurate categorization of 

Internet hosts can help differentiate and identify 
malicious Internet hosts (and their users) from the mass 
of legitimate ones. 

Machine learning will be applied for clustering 
profiles. For machine learning approaches, feature 
selection is a very important step that needs to be specific 
to the problem. Currently, there is no study available for 
understanding and comparing the effect of feature 
selection in the context of NetFlow data. A combination 
of features will be used, some of them are directly 
extracted features, and others are calculated from the 
collected features using simple calculations or statistical 
analysis or obtained after applying techniques from the 
information theory like entropy (or Uncertainty). It’s not 
possible to study all IP addresses or all clusters obtained, 
so the attention of this study will be focused on a few of 
the clusters or IP addresses which we call them the most 
significant. 

VI. EXTRACTION OF THE MOST SIGNIFICANT IP 

ADDRESSES 

It’s not possible to monitor and profile every IP 
address appears over the internet, even each IP address in 
the trace, so we focus on the most significant IP 
addresses. The term “significant clusters of interest” were 
used in [4] by applying entropy based approach to cluster 
IP hosts on each dimension of the four-feature space, 
SrcIP, DstIP, SrcPrt, and DstPrt to extract the significant 
clusters of interest. The extracted SrcIP, DstIP clusters 
yield a set of “interesting” host behaviors 
(communication patterns), while the SrcPrt and DstPrt 
clusters yield a set of “interesting” service/port behaviors, 
reflecting the aggregate behaviors of individual hosts on 
the corresponding ports. In our research we depend on a 
more efficient and less cost method to extract the most 
active IP addresses that represent most of the flows in the 
trace. We have found that excluding 10% of the flows 
could means reducing the number of IP addresses that 
need to be analyzed in a very efficient way. In the 
following figure we can notice the number of significant 
clusters of interest from the total and distinct number of 
IP addresses, and because our study focuses on active 
flows initiated by the IP address, so we extracted the 
significant clusters of interest based on SrcIP. Let n 
denotes to the number of flows, m is the number of 
distinct elements of srcIPs, If X={x1, x2, ..,xm} is the 
complete list of source IPs, let p(xi) represents the 
possibility of appearance of xi in the flows of the trace 
during the period of study. We want to study IP behaviors 
over a long enough period to be able to get valuable 
profiles so that we need to extract the most significant 
clusters of interest. We select an epsilon value ε ൌ
0.1, 0.2 to exclude the srcIPs that initiate flows less than 
10%, 20% of the total flows, and analyze IP addresses 
that initiate more than 90% and 80%. The remaining 
significant srcIPs is the list of SrcIPs that initiate flows 
more than 90% of the total flows: 

෍݌ሺݔ௜ሻ ൐ 1 െ  ߝ

Clustering 
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We developed an efficient algorithm to extract the list 
of significant SrcIPs which will be analyzed later. As we 
notice in Figure 3 that for periods of one hour, the 
maximum number of flows may reaches tens of millions 
with about one million of different source IP addresses. 
Analyzing this big number of IP addresses is impossible, 
so we select the most significant IP addresses, in the 
figure we may notice that if we exclude 10% of the flows 
we may get a list ten times less than the original of source 
IP addresses that initiate 90% of the total flows captured 
by netflow, and if we exclude 20% of the total flows we 
may get a list of 1/30 of the original distinct source IP 
addresses and this small list initiate more than 80% of the 
total flows. For our study, to get a more reliable and more 
reasonable results we have excluded 10% of flows and 
studied the 10% of source IPs that initiate more than 90% 
of the total flows. 

VII. SELECTION AND EXTRACTION OF COMMUNICATION 

PATTERN FEATURES  

For the efficiency of processing and ease of 
interpretation we need to keep the number of feature 
space as low as possible, but on the other side to allow 
the discrimination of different host behaviors it should 
present host behavior carrying rich enough information. 
We use only packet header information provided by 
NetFlow, we obtain direct and indirect features for each 
host. Direct features are retrieved directly without further 
computation, while Indirect features include those 
computed using multiple packets in a host’s 
communication. Our focus will be on active 
communication carried by the profiled host and ignoring 
passive communication carried by other hosts. We found 

the following features are the most important to represent 
host behavior communication patterns: 

 
1. Number of peers (or the count of unique Destination 

IP addresses): the number of distinct IP addresses 
contacted by this host to which at least one packet is 
sent. This feature distinguishes the host community 
of peers that receive traffic from this IP. In other 
words the peers are the destination IPs to which at 
least one packet is sent to in the trace. This feature 
reflects the popularity of the IP node, and the 
importance of this feature comes from that this 
feature distinguishes one-to-one communications 
(like P2P or downloads) from one-to-several (like in 
web browsing) and one-to-many (like in netscans). 

2. The ratio of the entropy of the first Destination IP 
byte to the entropy of the fourth Destination IP byte 
H(IP1)/H(IP4). 

3. The ratio of the entropy of the second Destination IP 
byte to the entropy of the fourth Destination IP byte 
H(IP1)/H(IP4). 

4. The ratio of the entropy of the third Destination IP 
byte to the entropy of the fourth Destination IP byte 
H(IP1)/H(IP4). 
These features reflect the social or functional role of 

a host, these features will characterize the dispersion 
observed in the list of peers (or Destination IP addresses) 
associated with a Source IP. We need to study the 
distribution of IP addresses, but because IPs are not 
values to apply statistical measurements over the values 
of the IPs, also the complete distribution of the peers in 
the IP space would be too complicated to characterize and 
will not give the desired results, so we apply Shannon 
entropy S which measures the distribution dispersion. 
Entropy for IP distributions has been previously used in 

 
Figure 3. a logarithmic scale to base 10 to display the significant clusters of interest of Source and destination IP addresses that represent 90% and 

80% of flows to the total number of IP addresses and the total number of flows over a complete one day with periods of one houre. 
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protocol and a single type of application, so we may say 
that the hosts within this cluster are clients each one is 
requesting a service from a single server under a single 
protocol and a single application which may be http 
request. 

B. P2P Traffic 

Cluster with label 2 is considered to be relatively a big 
cluster of hosts initiating big traffic with a small number 
of peers, we may notice that the packet size tend to be so 
big and the number of packets per flow is also very big 
with a very long duration of flows and a big number of 
flows per destination IP, a single type of protocol and a 
single type of application with a relatively small number 
of SYN-ACK equals to the number of peers. This form of 
traffic is similar to that of P2P traffic where: 1) all 
computers share equivalent responsibility for processing 
data. 2) Computers in a peer to peer network run the same 
networking protocols and software. 3) Peer to peer 
networks handles a very high volume of file sharing 
traffic by distributing the load across many computers. 

C. Scanning a single port 

As we notice in the values showed in Table I, the 
cluster labeled with number 6 the number of elements in 
this cluster is not big 17 SrcIPs, the traffic behavior of the 
hosts in this cluster is anomalous. We may notice the big 
number of peers, and the small size of packets, no SYN-
ACK signals sent from these IPs, a single source port 
were used in transmission to a single destination port on 
the destination IPs. A single packet is sent in each flow 
from the SrcIP with a very low duration of flow. All 
SrcIPs in all of their transmission used only one protocol 
and a single type of application, and also we may notice 
that a single flow is made with the destination IPs. We 
may notice also that the changes in the third and fourth 
bytes of destination IPs is much bigger than the changes 

in the first two bytes, we may notice that the change in 
the third destination IP is very slightly lower that of the 
fourth byte which means a scan over class B. 

D. Server traffic behavior 

From the same table mentioned above we may notice 
the cluster with label 19 which includes 132 elements, 
they show a server traffic behavior based on their 
transmission, they send traffic to a very high number of 
peers (clients in this situation) with a very low entropy of 
source ports and the maximum entropy of destination 
ports which means the change in the ports on the servers 
is very low while the changes in the ports on clients is 
very high which means a new port for each connection. 
And as it’s known that clients request a service that is 
listening on a specific port on the server and assign a new 
(random) port number on the client, this new random port 
number is used as a destination port in the traffic 
transmitted from the server to the client. We can notice 
that the hosts in this cluster send a big number of SYN-
ACK signals which is can’t be transmitted from the host 
that initiate a connection (client) but can be sent from the 
hosts that provide a service to other clients here we call 
them as servers. Also we may notice that the packets 
transmitted are medium in size not small and not big 
which means a normal traffic and a medium duration of 
flows. And as we have mentioned early when we selected 
features that servers tend to use a single protocol and one 
type of application more than others, we can notice that 
the value of entropy in the type of protocol and type of 
application is very low.  

IX. CONCLUSION 

The contribution of this paper includes: 1) discussion 
about the features or host behavior communication 
patterns to be utilized in clustering to characterize 

Table	I.
SOME	SELECTED	CLUSTERS	GENERATED	BY	DBSCAN	

 Cluster label 1 2 6 19 
 Number of Cluster Members 234 803 17 132 
 Features Averages of the values of extracted 

Features of the cluster 
1. Number of peers 1 3 1549 2343 
2. H_IP1/4 0 0.072 0.271 0.364 
3. H_IP2/4 0 0.070 0.401 0.447 
4. H_IP3/4 0 0.083 0.995 0.805 
5. Number of srcprts per peers 50 0.891 0.001 0.0242 
6. H_srcprt 4 0.067 0 0.005 
7. Number of dstprts per peers 1 31 0.00084 6.38 
8. H_dstprt 0 4.117 0 8.34 
9. Mean pkts per flow 1.2 440 1 2 
10. Mean pkt size (byte) 590 1454 75 1225 
11. Mean flows per peer 56 44 1 8 
12. Mean duration of flow (ms) 6526 14695 0.0006 4559 
13. H_prot 0 0 0 0.0004 
14. H_toa 0.0027 0.008 0 0.0053 
15. Number of SYN-ACKs 0.0256 2.42 0 636 
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