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Abstract 

 
Super points are sources or destinations that connect to 

a larger number of distinct destinations or sources during 
a measurement time interval. High-speed monitoring of 
super points is a challenging problem with application to 
real-time attack detection using a limited memory space. 
In this paper, we propose a method for detecting super 
points, and prove guarantees on their accuracy and 
memory requirements. Our method is based on sampling 
and data streaming, and sampling technique can 
probabilistically assure to sample only large-flow sources 
or destinations. Data streaming technique sets an IP 
bitmap and flow bitmap to judge an existed IP. Our 
method are both theoretically and experimentally more 
efficient than previous approaches.  
 
1. Introduction 
 

The problem of detecting super points arises in network 
monitoring and security applications. Many network 
attacks, such as DDoS attacks, worm attacks, network 
scan events, cause some sources or destinations IP address 
to produce or receive a large number of messages to 
distinct destinations or sources in a given measurement 
interval. For a lightly loaded OC-48 with a favorable 
traffic mix, a measurement system with a few hundred 
megabytes of memory and efficient algorithms for 
counting flows can afford to keep an entry for each source 
and destination IP. However, under adverse traffic mixes 
such as massive DoS attacks with source addresses faked 
at random or worms aggressively probing random 
destinations, keeping even a small entry for each unique 
IP address will consume too much memory of 
measurement monitors.  

This problem of detecting super points has been studied 
in recent years. Snort [1] and Flowscan [2] keep record for 
each source and destination. This straightforward 
approach doesn’t have memory-efficient implementation, 
since the hash table typically requires large quantities of 
DRAM for operation, so this approach is not feasible for 
monitoring high-speed links.  Venkataraman [3] 
proposes two flow sampling techniques for detecting 
super points. Qi Zhao [4] proposes two algorithms to 
solve the problems using data streaming algorithm and 
sampling technology. But his paper focused on estimating 
the number of flows in source or destination IP, and didn’t 

give a method to keep the source/destination IP records. 
Noriaki [5] proposed an adaptive method of identifying 
super points by flow sampling.  

Our method is based on sampling and data streaming, 
and can probabilistically sample only large-flow sources 
or destinations. After a packet arrives in the monitor, the 
algorithm checks the IP table to judge whether the IP 
which the packet belongs to has existed in the IP table. If 
the IP is found in the IP table, then the flow which the 
packet belongs to will be checked to judge whether the 
arrived flow is a new flow. If a new flow is arrived, then 
the IP entry in the IP table is updated. If the IP isn’t found 
in the IP table, then we will sample the flow. If the flow 
is sampled, then the IP which the flow belongs to will 
be added into the IP table. 

The rest of this paper is organized as follows. Section 2 
analyzes our method in detail. Section 3 analyzes the 
accuracy of the algorithm. We evaluate this method and 
two other algorithms using the NLANR traces in Section 
4, and end with conclusions in Section 5. 

 
2. Super points Detection algorithm (SDMA) 
 

After a packet arrives in the monitor, the algorithm 
checks the IP table to judge whether the IP which the 
packet belongs to has existed in the IP table. If the IP is 
found in the IP table, then the flow which the packet 
belongs to will be checked to judge whether the arrived 
flow is a new flow. If a new flow is arrived, then the IP 
entry in the IP table is updated. If the IP isn’t found in the 
IP table, then we will sample the flow. If the flow is 
sampled, then the IP which the flow belongs to will be 
added into the IP table.  

The algorithm submits it to the bloom filter process 
directly if the source or destination IP in the packet 
belongs to an entry in the source or destination IP memory, 
otherwise, the flow sampling process samples this flow 
random with a probability p. Let a flow identifier of a 
packet be x, a hash function h produce a hash value h(x), 
the maximum of the hash value be max, and p be 
sampling probability. If h(x)/max is less than p, then the 
source or destination IP of this packet is sampled, and the 
source or destination IP is added in the source or 
destination IP memory. After the IP is added, the sample 
& hold process will submit all its subsequent packets 
whose source or destination IP is equal to the IP. When a 
packet passes through the sample & hold process, the 
bloom filter will detect the bloom filter data memory to 
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judge whether the destination or source IP of this packet 
belongs a new or existing IP. If it has no record in the 
bloom filter data memory, then its information is added 
into the bloom filter, and the source or destination IP 
memory is also updated at the same time. 

In order to save the source or destination IP memory, 
the early-removal process removes some small source or 
destination IP entries from the memory. The measured 
interval is divided into several sub-intervals and the 
early-removal process checks and removes some small 
entries from the source or destination IP memory based on 
some predefined thresholds in every sub-interval. 

This method consists of three processes and two data 
structures. The three processes are flow sample & hold, 
bloom filter, and early-removal. The flow sample & hold 
process decides whether to measure the flow, the bloom 
filter judges whether the packet belongs to a new flow, 
and the early-removal process removes some small entries 
from the source/destination IP data memory. We will 
discuss and analyze the three processes as following. 

We define a bitmap to record these flows which have 
been written into IP table and an IP table used to keep the 
IP records and its flow number. Let the size of the bitmap 
be w bits. The bitmap is initialized to all “0” at the 
beginning of the measurement interval. The bitmap is 
used to record whether the flow is existed. We set a hash 
function h that maps a flow label to a value uniformly 
distributed in [1, w]. As soon as the arrival of a packet 
pkt, we hash its flow label (pkt.sourceIP, pkt.destIP, 
pkt.sport, pkt.dport) using h hash function, 
  r= h(pkt.sourceIP, pkt.destIP, pkt.sport, pkt.dport)  (1) 

The result r is treated as an index into the bitmap B. if 
B[r] is equal to 1, then the flow has arrived and has been 
processed earlier, and we will miss to process the packet. 
If B[r]=0, then the flow of the packet belonging to is a 
new one. The IP record in the IP table is updated. 

When a new packet arrived in the monitor, first we 
check the IP table. If the IP which belongs to the arrived 
packet has no entry in the IP table, then as with ordinary 
sampling, we sample the flow with a probability. If the 
flow is sampled, then a new entry is recorded in the hash 
table. If the IP has recorded into the IP table, we will 
check the bitmap to judge whether the flow is a new flow. 
If the flow is new one, then the IP entry is updated. By 
this method, after an IP entry is created for a source or 
destination IP, we will update the entry for every 
subsequent flow belonging to the source or destination IP. 

Let a flow identifier of a packet be x, a hash function h 
produce a hash value h(x), the maximum of the hash value 
be max, and p be sampling probability. If h(x)/max is less 
than p, then the source or destination IP of this packet is 
sampled, and the source or destination IP (SDIP) is added 
in the SDIP memory. Because all packets of a flow have 
same hash values, the number of packets in a flow does 
not affect its probability to create of an entry in the SDIP 
memory.  

 

3. Accuracy Analysis 
 
We formally quantify the probability that a super 

points with a certain number of flows is not detected. Let 
F be a threshold of the number of flows of a defined super 
points and p be the flow sampling probability. The 
probability p′  that the super points with F flows will not 

have an entry is FpF epp −≈−=′ )1( . 

Let  be a little number. We define p′  as a probability 

that a super points with F flows is missed must be less 

than or equal to , i.e., δ≤=′ −Fpep . Thus, the sampling 

probability p should satisfy the equation (1) to detect the 
super point with F flows. For example, if we need to 
detect a super points whose flow number is larger than 
100, and let 0001.0≤δ . We can compute p >= 0.092 by 
the equation (2). 

Fp )/1ln( δ≥        (2) 
Let a super point has s flows, when the first flow of the 

super point is sampled, the number of passed flows in the 
s flows is X. X is a geometric probability distribution, it’s 
probability mass function (PMF) is 

ppkXP k 1)1()( −−== .  

Where X=k means that when the first flow of the 
super point is sampled, the number of passed flows in the 
s flows is k-1. 

E(X) = 1/p, 
2)1()var( ppX −= . The estimated 

value of x is the equation (3),  

px /1ˆ =         (3) 
Its variance is 2)1( pp− . 

After the first flow of an IP is recorded into the IP table, 
all subsequent flows which belong to the IP will be 
measured, and its subsequent flow will be checked by the 
bitmap to judge whether the flow is a new one. When a 
new flow is judged in the bitmap, suppose the number of 
“0” entries in bitmap B (with size w) is u right before a 
packet pkt with source s arrives. Assume the flow is a new 
flow, and the flow identifier is mapped into B[r]. Then 
value of B[r] is “0” with probability u/w, and the 
probability of B[r]=0 is 1-u/w. So we can use w/u to 
update the IP flow numbers N(s).  

Suppose in the measurement interval, we find k flows 
of belonging to s IP from the bitmap B. So we can get an 
unbiased estimator of s IP flow number after the first flow 
of s IP is recorded into the IP table 

∑ =
= k

i is uwN
1

/ˆ                        (4) 

Let 0001.0=δ  be a probability threshold that a super 
points is missed and =0.1 be a relative error threshold 
which an error of an estimator of the number of super 
points is accepted. And let the threshold F of the flow 
minimum of super points be F=100. If the condition in the 
equation (2) is satisfied, then the minimal probability for 
flow sampling is 0.092, and if the condition in the 
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equation (4) is satisfied, then the minimal probability for 
flow sampling is 0.095. If we set the sampling probability 
to 10%, then we can assure that the super points with over 
100 flows is detected and evaluated with 0001.0≤δ , and 
=10%.  

As a second example, let F=1000, 0001.0≤δ , =10%, 
Equation (2) needs the sampling probability larger than 
0.0092, and equation (4) requires that it be larger than 
0.0092. If we set the sampling probability to 1%, then the 
two conditions can be satisfied. 

When the ith flow arrives the bloom filter (a bloom filter 
structure with m bits spaces, and k hash functions), the ni 
bit positions are 1, so the probability that a hash value of a 
new flow entries into one 1 bit position is ni/m. Because 
the probability that all k hash function entry into 1 bit 
positions is (n/m)k, the probability that a new flow can be 
detected is pi=1-(ni/m)k. Therefore to obtain an unbiased 
estimator of the SDIP flows on the sampled traffic, we 
should statistically compensate for the fact that with 
probability 1-pi, the bit in the bloom filter has value 1 and 
the flow will miss the update to the SDIP memory due to 
aforementioned hash collisions. It is intuitive that if we 

add ))/(1(1/1 k
ii mnp −= to the SDIP entry, the 

resulting estimator is unbiased, and its variance is 
22 ))/(1()/()1( k

i
k

iii mnmnpp −=− . 

To be more precise, suppose in a measurement epoch, 
the BF is updated by altogether T flows {flowj, j=1, 2, ...,T} 
from a SDIP s. The output of the SDIP memory, which is 
an unbiased estimator of super points on the sampled 
traffic, is the equation (5), and its variance in equation (6). 

( )( )∑ =
−= T

i
k

i mnsE
1

)/(11)ˆ(      (5) 

∑ = −
= T

i k
i

k
i

mn
mnsVar

1 2))/(1(
)/()ˆ(     (6) 

If we consider the FSH, and the BF at the same time, 
we can establish the following equation (7) and (8) to 
characterize an unbiased estimator ŝ , and the variance of 
the estimator ŝ  according to equation (3), (5), (6).  

( )( )1
ˆ( ) 1 1 ( / ) 1/

T k

ii
E s n m p

=
= − +∑       (7) 
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We define a relative error , and assure the estimation 
error of the super points with F flows less than or equal 

to , i.e., ( ) ε≤− Fpp1 , so the sampling probability 

p should satisfy equation (9). For example, let a super 
points have larger than 100 flows, and its relative error be 
0.1, we can compute the p>=0.095 according to equation 
(9). 

pFF ≤⎟
⎠
⎞⎜

⎝
⎛ −+ 2222 2141 εε     (9) 

 

4. Evaluations 
 

We use two groups packet header traces gathered at 
NLANR [6] to test the model. The First group traces 
(Traces1 and Traces2 ) (IPLS-CLEV) were collected on 
two OC48c links at IPLS router node, on August 14, 
2002, from 9:00 am to 9:10 am. The second group traces 
(Traces 3 and Traces 4) used OC192MON hardware to 
collect data on August 19, 2004, from 13:40pm to 
13:50pm. Table 1 summarizes the information for 
threshold of F=100 and F=1000 in the data traces. 

Data 
Name 

# of 
flow 

# of super 
point,  F=100 

# of super point,  
F=1000 

A0S 8432 281 8
A0D 33760 103 8
A1S 11747 104 9
A1D 47232 190 1
C0S 26160 644 268
C0D 76526 359 15
C1S 18050 236 11
C1D 104333 143 4

In this table, A0S means the source IP flows in the No.1 traces; 
A0D is the destination IP flows in the No.1 traces; A1S means 
the source IP flows in the No.2 traces; A1D is the destination IP 
flows in the No.2 traces; C0S means the source IP flows in the 
No.3 traces; C0D is the destination IP flows in the No.3 traces; 
C1S means the source IP flows in the No.4 traces; C1D is the 
destination IP flows in the No.4 traces. “# of flow” means the 
number of flows, “# of super point, F=100” means the number of 
super points which is defined with over 100 flows, “# of super 
point, F=1000” means the number of super points which is 
defined with over 1000 flows.  

We compare the three algorithms: Venkataraman, Zhao, 
SDMA. Venkataraman’s algorithm [3] uses flow sampling 
algorithm that estimates the fan-outs of sources. Their 
algorithm randomly samples a certain percentage of 
source-destination pairs using a hashing technique. Zhao’s 
algorithm [4] also uses a hash-based flow sampling 
algorithm to approximately count the fan-outs of the 
sampled sources. Its main difference is that the sampled 
traffic is further filtered by a simple data streaming 
module. This allows for much higher sampling rate than 
achievable with traditional hash-based flow sampling.  

Before we begin to examine the measured accuracy of 
different algorithms, two error metrics are defined. The 
error metrics in the equation (10) evalues the estimated 
error of the ith super point. Where Xi is the actual flow 

numbers of the ith super point, and iX̂  is the estimated 

value of the ith super point. The avg_error metrics in the 
equation (11) is a average estimated error of all n 
estimated super points, where n is the number of super 
points. 

ˆ( ) / 100%i i i ierror X X X= − ×           (10) 

nerrorerroravg
n

i
i /_

1
∑

=
=      (11) 
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The measured average error of all super points, which 
is larger than 100 flows, is compared among the three 
algorithms using the sampling rate 10% in the figure 1. X 
axis is the No. of traces in the table 1, and y axis is the 
average error. 
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Figure 1 Average Error of Super Points 

The figures 1 shows that the average accuracy of 
SDMA’s algorithm in our paper is better than that of Zhao, 
and Venkatarman when the super point is defined over 
100 flows and the sampling rate in all algorithms is 10%.  
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Figure 2 Cached IP number and the number of 
super points 

Figure 2 is the cached aggregation point entries using 
the SDMA algorithm and Venkataraman algorithm to 
detect the super points which the IP has over 100 flows. 
Venkataraman algorithm and Zhao algorithm have almost 
the same cached aggregation point entries, so we only 
give the Venkataraman’s result. In the figure 2, we also 
give the number of super points in these traces. Figure 2 
shows that the SDMA can save more memory than the 
Venkataraman because a removal process which is used in 
the SDMA algorithm can reduce the aggregation point 
entries in the aggregation point memory. 

 
5. Conclusion 
 

It is a significant challenge in network management and 
security to detect super points in the high-speed network 
links efficiently and accurately. In this work, we propose a 
new method for detecting super points that guarantees 
accurate and exhibits a realistic memory requirement. Our 
method is based on sampling and data streaming, and 
sampling technique can probabilistically assure to sample 
only large-flow sources or destinations. Data streaming 
technique sets an IP bitmap and flow bitmap. We show 
experimental results on real network traces. 
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