
VOL. E98-B NO. 9
SEPTEMBER 2015

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

1848
IEICE TRANS. COMMUN., VOL.E98–B, NO.9 SEPTEMBER 2015

PAPER

RTT Estimation with Sampled Flow Data

Qi SU†,††a), Jian GONG† ,††b), Nonmembers, and Xiaoyan HU†,††c), Student Member

SUMMARY Round-trip time (RTT) is an important performance met-
ric. Traditional RTT estimation methods usually depend on the cooperation
of other networks and particular active or passive measurement platforms,
whose global deployments are costly and difficult. Thus a new RTT esti-
mation algorithm, ME algorithm, is introduced. It can estimate the RTT
of two hosts communicating through border routers by using TCP CUBIC
bulk flow data from those routhers without the use of extra facilities, which
makes the RTT estimation in large-scale high-speed networks more effec-
tive. In addition, a simpler and more accurate algorithm—AE algorithm—
is presented and used when the link has large bandwidth and low packet
loss rate. The two proposed algorithms suit sampled flow data because
only duration and total packet number of a TCP CUBIC bulk flow are in-
puts to their calculations. Experimental results show that both algorithms
work excellently in real situations. Moreover, they have the potential to be
adapted to other TCP versions with slight modification as their basic idea
is independent of the TCP congestion control mechanism.
key words: RTT estimation, sampled flow data, network measurement,
network management, Markov chain

1. Introduction

RTT is generally defined as the interval between the times-
tamp of a sent packet and that of the corresponding acknowl-
edgment. This is an essential metric and an important indi-
cator for network performance monitoring.

The requirements of RTT estimation for various appli-
cations are different. Some applications need the measure-
ment with high degree of precision, such as the applications
for high performance computing tasks within data center
networks and those for electronic trading systems. There are
particular solutions that use specialized facilities to meet this
requirement, such as [1]–[3]. Diagnosis or troubleshooting
oriented applications, on the other hand, need on-demand
RTT measurement; thus, inefficient estimation may be ac-
ceptable, and the scalability of the estimation methods is not
a critical concern. However, most of the other applications,
particularly those focusing on performance assessment, are
more interested in tracking whether RTT values are within
a specified range or have exceeded a threshold for a long
time, such as the application of monitoring an ISP’s QoS
by the RTT values between the hosts inside and outside the

Manuscript received February 9, 2015.
Manuscript revised May 19, 2015.
†The authors are with the School of Computer Science and En-

gineering, Southeast University, Nanjing 211189, P. R. China.
††The authors are with the Jiangsu Provincial Key Laboratory

of Computer Network Technology, Nanjing 211189, P. R. China.
a) E-mail: qsu@njnet.edu.cn
b) E-mail: jgong@njnet.edu.cn
c) E-mail: xyhu@njnet.edu.cn

DOI: 10.1587/transcom.E98.B.1848

ISP and the application of evaluating the user experience of
an ICP (Internet Content Provider) based on the RTT val-
ues from users’ hosts to it. These applications can tolerate
approximate estimation results and a certain amount of er-
ror. However, efficiency and scalability are the major con-
cerns for their RTT estimation because they usually perform
a long-term monitoring for large-scale high-speed networks,
and it is insufficient to conduct these applications based on
the RTT values from a small number of host pairs in short
duration. This paper makes an attempt to explore a method
that ensures efficiency and scalability of RTT estimation in
large-scale high-speed networks.

RTT estimation has drawn numerous researchers’ at-
tention and efforts. Their methods can be broadly divided
into two categories—active ones and passive ones. Of the
former, taking advantage of the interval between sending
an ICMP echo request and receiving corresponding ICMP
echo reply is the most prevalent one, and using the interval
between sending TCP SYN packet and receiving the first
ACK packet is another approach. Despite the high accu-
racy these methods can achieve, their results can only be
collected in end-hosts. Nevertheless, RTT estimation, al-
ready an intrinsic part of the TCP, is trivial at end-hosts,
while it is extremely challenging yet valuable in the mid-
dle of the networks [4], which is the common environment
of network management. Besides, these methods can hardly
be deployed in large-scale networks that have massive hosts.
What’s more, due to the increasingly significant network se-
curity issues, non-cooperative operators of other networks
tend to block the long-lasting measurement traffic, making
sustainable monitoring almost impossible.

The passive methods, on the other hand, use real traf-
fic for estimation. Among these methods, SA and SS [5]
are the most classic ones. SA employs the interval between
the last SYN packet and the first ACK packet from caller
to callee to estimate RTT. The basic idea of SS is to regard
the interval of the first and the second burst of the TCP ses-
sion as the RTT value. Though simple and accurate, these
two methods are of limited utility because only RTT values
of the beginning are obtained, and they can fluctuate con-
siderably over the transmission. Zhang et al. [6] propose
a method that generates a series of RTT value candidates,
and the one that fits the behavior of current TCP session
best is chosen to estimate the real RTT. The authors in [7]
calculate the congestion window (cwnd) size, then use it to
find the two packets–the receiver’s acknowledgment packet
and the one that triggers it. The interval between these two

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

SU et al.: RTT ESTIMATION WITH SAMPLED FLOW DATA
1849

packets’ timestamps is considered as the estimation result.
The ALE algorithm introduced in [4] is an approximate and
scalable RTT estimation method. Instead of recording the
actual timestamps of the packets, this algorithm maps the
timesamps into discrete intervals with fixed or exponential
sizes and uses the middle value of intervals to estimate RTT.
The above-mentioned methods are based on full packets.
Nevertheless, capturing or tracking them in large-scale high-
speed networks demands high-end solutions, which are usu-
ally costly and require extra measurement facilities and plat-
forms. In addition, the collected data needs a lot of storage
to keep and computation power to process, making the rou-
tine network management even harder. Therefore, none of
those methods is capable of practical, sustainable and com-
prehensive monitoring of the network performance.

Flow data is another available source data for RTT es-
timation. What is more, flow data based estimation needs
no extra collection facilities and can be deployed easily be-
cause most extant routers provide mechanisms to capture
flow data, like NetFlow (cf. RFC 3954) and sFlow (cf. RFC
3176), and a corresponding Internet standard, IPFIX (cf.
RFC 5101), has been introduced by IETF. Based on flow
data, Strohmeier et al. [8] propose a measurement model in
which two related opposite-direction TCP flows are care-
fully selected, and the interval of their first packets’ times-
tamps is used to estimate RTT. However, the scalability and
practicality of this method are weakened by the fact that two
associated flows need finding and that this method can not
be applied in the sampling environment since it uses the first
packet’s timestamp of each flow. As the amount of traffic
grows, the flow data without sampling operation becomes
harder to gather and analyze.

To wrap up, given that the extant methods can not ful-
fill the requirements of the performance monitoring appli-
cations for large-scale high-speed networks, we propose a
RTT estimation method that can take sampled TCP CUBIC
bulk flows as inputs. TCP CUBIC bulk flows are chosen for
discussion because they, unlike TCP interactive flows, can
be free from users’ responsive time and the data process-
ing time (elaborated on in Sect. 3); besides, TCP CUBIC is
the default TCP implementation of the Linux (after Linux
2.6.29 [9]), the most popular operation system for the TCP
bulk flow senders (e.g. the WEB and FTP servers); as a re-
sult, most TCP bulk flows in the Internet employ the TCP
CUBIC congestion control mechanism. After studying the
behavior of TCP CUBIC bulk flows, we establish ME al-
gorithm. Meanwhile, we use a simpler yet more accurate
algorithm, AE algorithm, when the link between two hosts
has low packet loss rate and large bandwidth. These two al-
gorithms are capable of taking sampled flows as the source
data because only the duration and total packet number of a
TCP CUBIC bulk flow are the inputs. Sampled flow data can
be easily collected by nearly all extant routers without ex-
tra facilities; therefore, the proposed method can effectively
monitor and manage the performance of most networks, es-
pecially the large-scale high-speed networks, such as back-
bone networks and ISP’s networks.

The contributions of this paper are summarized as fol-
lows:

• We, for the first time, present a method to estimate RTT
in sampling environment, and it takes sampled flow
data, which is widely supported by extant routers as
input. In contrast, traditional RTT estimation methods
can hardly be applied to the performance monitoring of
large-scale high-speed networks due to the costly high-
end solutions and authority limits.
• We modify the old models of TCP CUBIC throughput

so as to make them adapt to SACK mechanism and in-
troduce ME algorithm to estimate RTT.
• We present AE algorithm to estimate RTT under its ap-

plication condition AEC, indicating the link has large
bandwidth and low packet loss rate.
• We demonstrate that the proposed method has the po-

tential to be applied to AIMD TCP versions with slight
modification.

The remaining paper is organized as follows. In Sect. 2,
we illustrate what a TCP CUBIC bulk flow will react when
packet loss happens under different circumstances. Based
on that, Sect. 3 presents a method with two RTT estimation
algorithms, and it is evaluated in Sect 4. Finally, a conclu-
sion is given in Sect 5.

2. The Dynamics of TCP CUBIC Flow

When Sender using TCP CUBIC sends data to Receiver,
there are two very important buffers involved in networking
stack—the application buffer and the socket buffer. Sender
copies data from application buffer to socket buffer and in-
jects packets into network with the TCP CUBIC congestion
control algorithm. Receiver gets the packets from network
and stores them in socket buffer. Then, these packets are
copied to application buffer for further processing. We as-
sume that the socket buffer size of Sender is smaller than
that of Receiver, since the default value of socket buffer
size of Sender in Linux 2.6.27 is 16KB, whereas that of
Receiver’s is 85KB [10]. Therefore, in the later discussion
of this paper, the impact of Receiver will be ignored.

Figure 1 shows how the cwnd size changes when
packet loss happens under two different conditions. Cwnd
size describes the maximum number of packets that can be
sent without any acknowledgment. Let B be the size of the
socket buffer, and the maximum size of cwnd W (in packet
for convenience) is given by

W =
B

MS S
, (1)

where MS S is the maximum segment size. TCP CUBIC
session starts from the slow start mode, and we use the tra-
ditional slow start algorithm to formulate this mode, rather
than the original Hybrid Slow Start algorithm [11] (the rea-
son will be discussed in detail in Sect. 3.4). The cwnd size
of the rth round of the slow start mode can be calculated as
follows:

1850
IEICE TRANS. COMMUN., VOL.E98–B, NO.9 SEPTEMBER 2015

Fig. 1 Typical cwnd size curve for TCP CUBIC with packet loss when
cwnd size is (a) far from W and (b) near (or equal to) W.

FS S (r) = 2r. (2)

When cwnd size is larger than ssthresh, the transmission
enters the congestion avoidance mode. In this mode, cwnd
size generally grows according to a cubic function:

Fcubic(w, t) = w + c
[
t − 3

√
βw/c

]3
,

where w is the cwnd size just before the packet loss happens
and t is the time since that loss. c and β in the function are
constants that are set to 0.4 and 0.3 respectively in the latest
TCP CUBIC. TCP CUBIC also incorporates TCP-friendly
behavior into its operation, which means it does not steal
bandwidth from standard TCP. To achieve this, TCP CUBIC
uses another cwnd growth function in TCP-friendly region
[9]:

Freno(w, t, τ) = (1 − β)w + 3β
2 − β

t
τ
,

where τ is the RTT. If Freno(w, t) is larger than Fcubic(w, t),
the TCP CUBIC operates in TCP-friendly region and uses
the former function as its cwnd growth function; otherwise,
Fcubic(w, t) is employed. Thus, the overall cwnd growth
function of the TCP CUBIC evolves as

FCA(w, t, τ) = max(Fcubic(w, t), Freno(w, t, τ)). (3)

As is shown in Fig 1(a), the congestion avoidance mode re-
peats once a packet loss occurs.

But as Fig. 1(b) shows, when a packet loss happens as
the cwnd size is near or equal to the maximum value W,
the cwnd size will then drop dramatically, and the transmis-
sion will enter the slow start mode rather than the congestion
avoidance mode. The SACK mechanism (cf. RFC 2018) is
responsible for that. Once a packet loss occurs, at least one
packet is not acknowledged; thus, it is impossible to copy
more than W −W ′ data from application buffer to socket

buffer, and Sender cannot transmit more than W −W ′+1
packets until the lost packet is announced. At the same
time, as the acknowledgments of other sent packets arrive,
the flight size, in f light, calculated by Sender, decreases
to W − W ′ + 1 and the cwnd size drops accordingly since
“cwnd = min(cwnd, in f light + 1)”. Consequently, when
W ′ is near W (i.e. W − W ′ + 1 < (1 − β)W ′), the resulant
cwnd size will be less than (1 − β)W ′, and the transmission
will step into the slow start mode; this phenomenon, which
has also been discussed in [10], will happen if the cwnd size
just before the packet loss W ′ satisfies

W −W ′ + 1 < (1 − β)W ′ ⇒ W ′ > (W + 1)/(2 − β). (4)

The above discussion shows that the condition of the
link between two end-hosts can deeply impact the dynamics
of the TCP CUBIC bulk flows transmitting through it. When
the condition is not so good (bandwidth is small or packet
loss rate is high), the cwnd size will hardly reach the W, and
its curve is likely to evolve as Fig. 1(a) shows. On the other
hand, if the link condition is reliable (bandwidth is large
and packet loss rate is low), the curve of this TCP CUBIC
session can be exhibited as Fig. 1(b). Based on that, the next
section will introduce the estimation method.

3. RTT Estimation

Figure 2 depicts the basic scenario of the TCP transmission.
Three participants are involved, the Sender, the Receiver
and the intermediate network where Monitor collects the
flow data. The packets sent by Sender are grouped burst by
burst (n1, n2, . . . , nk packets in Fig. 2). After a burst of pack-
ets arrive at the Receiver, it takes t1 time to process them
and then send a burst of ACK packets back to Sender; after
ACK packets arrive, it takes t2 time for Sender to handle
them and start to send another burst of packets. The TCP
session transmits all the data by such analogy. In this paper,
the procedure where Sender sends a burst of packets and
receives the corresponding burst of ACK packets is called
a round (see orange dashed box in Fig. 2). Note that com-
pared with RTT, the intervals of any two data packets within
a burst can be ignored; the same is true for any two ACK
packets within a burst. Hence, we assume that the sending
time of the packets within a burst is almost the same, so is
their arriving time.

The essential idea of the RTT estimation in this paper
is illustrated as follows. Let w(r) be the burst length of the
rth round. If the total packet number during transmission is
N, total time consumed is T , and average RTT is τ, we can
get

T/τ∑
r=1

w(r) = N, (5)

where T/τ calculates the number of rounds. Obviously, the
RTT value τ can be obtained by (5) once w(r) for each round
has been obtained.

As to Monitor, it can only sense the interval between

SU et al.: RTT ESTIMATION WITH SAMPLED FLOW DATA
1851

Fig. 2 Basic model of the proposed method.

two adjacent bursts (RTTE in Fig. 2), and uses it to estimate
the real RTT (equals RTTR1 + RTTR2 in Fig. 2). However,
due to the process time of Sender and Receiver (t1, t2 in
Fig. 2), RTTE has certain disparity with the real RTT; hence,
we should select the flow data in which the t1 and t2 are as
short as possible so as to gain higher accuracy. TCP flows
can be divided into two classes: TCP interactive flows con-
taining interactive data (like Telnet and Rlogin data), and
TCP bulk flows containing bulk flow data (like FTP and
HTTP data). This paper selects the bulk flows instead of in-
teractive flows to estimate RTT due to the following reason:
for TCP interactive flows, t1 generally contains the com-
mand processing time (Telnet), and t2 usually includes the
time before users finish typing, both of which are usually
much larger than RTT values and can not be elided; TCP
bulk flows, on the other hand, can avoid the interference of t1
and t2, because data processing and users’ action are not in-
volved once Sender starts to transfer data. Moreover, only
TCP CUBIC flows are used as the inputs of the proposed
method since the TCP CUBIC is applied to the most popu-
lar operation system of TCP bulk flow senders, as mentioned
in Sect. 1. To sum up, we choose (sampled) TCP CUBIC
bulk flow data collected by intermediate routers (Monitor
in Fig. 2) as inputs. For a TCP CUBIC bulk flow, suppose
that there is always enough data to transmit till the end of
transmission, the Sender will never stop sending packets
until the number of unacknowledged packets reaches cur-
rent congestion window (cwnd) size; as a result, the (5) will
be

T/τ∑
r=1

cwnd(r) = N, (6)

where cwnd(r) describes the congestion window size of rth

round (i.e. n1, n2, . . . , nk in Fig. 2 are the cwnd sizes of each
round).

Based on the modification of the extant TCP CUBIC
throughput models in [10], [13], [14], we estimate the cwnd
size of every round and present a new RTT estimation
method with two algorithms, which are all based on these

Fig. 3 Basic idea of ME algorithm.

two assumptions:

• The probabilities of all packets experiencing packet
loss in the flow are assumed to be identical and mu-
tually independent (the shared probability p, i.e. the
packet loss rate, can be calculated by the method pre-
sented in [12], which can be applied to sampling envi-
ronment).
• The RTT values during the transmission are assumed

to be constant since our method is aimed to estimation
the average RTT.

This section is organized as follows. In the first subsec-
tion, ME algorithm is introduced, which generates several
RTT candidates and chooses the value that fits the flow best
to be the estimated RTT. In addition, AE algorithm, as well
as its application condition, is presented in second subsec-
tion. Despite its limited application, the AE algorithm is of
less complexity and higher accuracy compared with the for-
mer algorithm. Then, Sect. 3.3 elaborates on the adaptation
of these two algorithms to sampled flow data. Finally, we
discuss the reasonableness of replacing Hybrid Slow Start
algorithm and the adaption of these two algorithms to AIMD
TCP visions respectively in the last two subsections.

3.1 Markov Estimation Algorithm (ME Algorithm)

A typical TCP CUBIC bulk flow is exhibited in Fig. 3. After
the first slow start mode, the transmission may enter either
the congestion avoidance mode or the slow start mode once
a packet loss occurs (the orange area after point A in Fig. 3).
As was discussed in Sect. 2, if the cwnd size at that time is
larger than (W + 1)/(2 − β), the transmission will step into
the slow start mode; otherwise, it will enter the congestion
avoidance mode.

For a pacrticular round of the transmission, let the
cwnd size just before the last packet loss be w and the num-
ber of rounds since that loss be r. We can obtain the cwnd
size of this round by

Fwin(w, r) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min{FCA(w, rτ, τ),W}, if w ≤ W+1

2−β
2r, if w > W+1

2−β & r ≤ r′

min{FCA(w, (r − r′)τ, τ),W}, others
,

(7)

where W is the maximum of cwnd, τ is the RTT, r′ is

1852
IEICE TRANS. COMMUN., VOL.E98–B, NO.9 SEPTEMBER 2015

log2(1 − β)w, and FCA is defined in (3). This function is
a piecewise function with three sub-functions:

• The first one describes the situation where the transmis-
sion steps into the congestion avoidance mode after a
packet loss happens (from point A to point B and point
B to point C in Fig. 3).

• The second one takes effect when (4) is fulfilled; the
transmission enters the slow start mode until cwnd
reaches ssthread, see point C to point D and point E
to point F in Fig. 3.
• The last one comes into use when (4) is fulfilled and

cwnd exceeds ssthread, which is illustrated from point
D to point E and after point F in Fig. 3.

For a given packet loss rate p, if the cwnd size of a
round is w, the probability of no packet losing in this round
is (1 − p)w, and the one of dropping at least one packet is
1 − (1 − p)w. Considering a stochastic process {Wk}, Wk

equals w if and only if the cwnd size is w just before the kth

loss event. If Wi = wi, for i = 1, 2, . . . , k−1, the probability
of the kth loss happening after r(r = 0, 1, . . .) rounds is

Pr{Wk=Fwin(wk−1, r)|Wk−1=wk−1, . . . ,W1=w1}

= (1−(1−p)Fwin(wk−1,r))
r−1∏
i=0

(1−p)Fwin(wk−1,i)

= Pr{Wk=Fwin(wk−1, r)|Wk−1=wk−1}, (8)

denoted as p(wk, r). From (8), we can find the process {Wk}
is a Markov chain with states {1, 2, . . . ,W} [15, chap. 4].
The transition matrix of this Markov chain P = {Pi j} can be
calculated by

Pi j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r′′∑
k=0

p(i, k)Fzero(Fwin(i, k)− j), if j<W

1 − W−1∑
k=1

Pik, if j=W
, (9)

where r′′ = max{r | Fwin(i, r) < W} and Fzero is defined as

Fzero(x) =

{
1, if x = 0
0, others

.

State 1 of {Wk} is reachable from any state within finite
steps since max{Wk} = W < ∞ and the minimum prob-
ability of packet loss is p. It implies that the {Wk} is an
irreducible positive recurrent Markov chain with a unique
stationary distribution π = (π1, π2, . . . , πW), in which πi is
the stationary probability of the state i [14]. From (7)∼(9),
we can derive the π by solving⎧⎪⎪⎨⎪⎪⎩

πP = π∑
i
πi = 1

,

And the expectation of cwnd size in the orange area of
Fig. 3, Ew, is obtained by

Ew =

∑W
i=1

∑W
j=1 πiPi j si j∑W

i=1
∑W

j=1 πiPi jri j

, (10)

where ri j is the number of rounds it takes for cwnd size to

Fig. 4 Illustration of ME algorithm.

grow from i to j:

ri j =
(

3
√

(j − i)/c + 3
√
βi/c

)
/τ,

and si j refers to the number of packets sent when cwnd size
grows from i to j:

si j =

ri j∑
r=0

Fwin(i, r).

As Fig. 4 displays, the estimated packet number of a
TCP CUBIC bulk flow NE can be calculated as follows:

NE = NS S + NS , (11)

where NS S is the number of packets transmitted during the
slow start mode, and NS is the one during the stationary
mode. From (2), NS S can be derived as

NS S =

log2 Ew∑
r=0

FS S (r) =
log2 Ew∑

r=0

2r = 2Ew − 1. (12)

The time consumed in the slow start mode TS S is

TS S = τ log2 Ew. (13)

Therefore, NS is

NS = (T − TS S)Ew/τ. (14)

From (11)∼(14), we can get the estimation of total packets
NE by

NE = 2Ew + T Ew/τ − Ew log2 Ew − 1, (15)

where T is the total time, Ew is the expectation of cwnd size
in (10), and τ is the target RTT.

Drawing the idea from [6], we generate a series of RTT
candidates, calculate the corresponding NE by (15) for each
of them and finally choose the RTT candidate whose NE

matches the real packet number N best to be the estimated
RTT value.

3.2 Area Estimation Algorithm (AE Algorithm)

The ME algorithm introduced in the previous subsection can
be applied to all situations, whereas its calculation is com-
plex. Here we present Area Estimation (AE) algorithm, a
simpler and more accurate (demonstrated in Sect. 4.1) es-
timation algorithm working perfectly under its application

SU et al.: RTT ESTIMATION WITH SAMPLED FLOW DATA
1853

Fig. 5 Illustration of AE algorithm.

condition — AEC.
For a link with low packet loss rate and large band-

width, the packet loss rarely happens throughout the TCP
sessions, and the cwnd size will quickly grow to W. Con-
sequently, an assumption is made that no packet loss hap-
pens until the cwnd size grows to W; in other words, there
is no packet loss when the cwnd size grows during slow
start mode as well as congestion avoidance mode until cwnd
reaches W, see Fig. 5. As a result, an area ACA will be
generated once a packet loss event happens after cwnd size
reaches W. Hence, we have

WT/τ = N + AS S + N pACA, (16)

where T is the duration of the flow, τ the unknown RTT, N
the packet number of the flow, and p the packet loss rate.
From (2), AS S can be derived by

AS S =

log2W∑
r=0

(W−FSS(r))=Wlog2W−2W+1=L(1), (17)

where L(x) is defined as

L(x) = W log2 xW − 2xW + 1, (18)

and the ACA can be given by

ACA =

log2(1−β)W∑
r=0

(W−FSS (r)) +
∫ t′

0
W−FCA(W, t, τ)d

t
τ

= L(1 − β) +min{ β
4τ

3

√
βW4

c
,

(2 − β)βW2

6
}, (19)

where t′ makes FCA((1 − β)W, t′, τ) equal to W. Note
that we use max{Fcubic(w, t), Freno(w, t, τ)} to roughly re-
place FCA(w, t, τ) for the sake of simplicity. In practice,
β/(4τ) 3

√
βW4/c is usually smaller than (2− β)βW2/6; at this

time, we can obtain the estimation of RTT τ by

τ =
WT − (βN p/4) 3

√
βW4/c

N + L(1) + N pL(1 − β) , (20)

where L(x) is defined in (18), W is the maximum cwnd size,
T the duration of the flow, N the packet number, p the loss
rate, and c, β are two constants of TCP CUBIC that are usu-
ally 0.4 and 0.3 respectively. Besides, if β/(4τ) 3

√
βW4/c is

larger than (2 − β)βW2/6, the estimated RTT is

τ =
WT

N + L(1) + N p(L(1 − β) + (2 − β)βW2/6)
. (21)

Fig. 6 Maximum packet loss for AE algorithm.

From (20) and (21), we can find that the AE algorithm
is much simpler than ME algorithm. It will work excellently
when the link is reliable but can cause huge error when the
link is of small bandwidth or high packet loss rate. There-
fore, we present AEC (Area Estimation Condition), the pre-
requisite for the application of AE algorithm. Its idea is
quite straightforward. If AE algorithm is suitable for this
flow, the number of lost packets is certainly smaller than
that shown in Fig. 6, which displays the maximum number
of dropped packets in the TCP session modeled by AE al-
gorithm. Let the RTT calculated for a flow by AE algorithm
in Fig. 6 be τe, the tCA can be obtained by

tCA = τe log2(1 − β)W +min
{

3
√
βW/c, (2 − β)Wτe/3

}
,

(22)

and the number of lost packet is

N′loss = (T − τe log2 W)/tCA + 1, (23)

where T is the duration of flow. To summarize, AEC is
N p < N′loss, where N is the total packet number, p is the
packet loss rate and the τe in the calculation of N′loss is de-
rived by AE algorithm.

According to the evaluation that will be exhibited in
Sect. 4.1, we recommend that AE algorithm should be ap-
plied under AEC, while ME algorithm should be used oth-
erwise.

3.3 Adaptation to Sampled Flow Data

The proposed method only needs the total packet number N
and the total time T , which can be worked out by the total
packet number Ns and the total time Ts in a sampled TCP
CUBIC flow. As is discussed in [16], when sampling oper-
ation is conducted in large-scale high-speed networks, it is
reasonable to assume that the sampling decision for every
packet in this flow is mutually independent, and the proba-
bility of each one being selected is a constant rs.

The probability of a flow with x packets before sam-
pling and Ns packets after is (let X describe the original
packet number, and Y the sampled packet number)

P(x,Ns) =Pr{X = x|Y = Ns}
=

Pr{Y = Ns|X = x}Pr{X = x}
∞∑

x′=Ns

Pr{Y = Ns|X = x′}Pr{X = x′}
, (24)

1854
IEICE TRANS. COMMUN., VOL.E98–B, NO.9 SEPTEMBER 2015

where

Pr{Y = Ns|X = x} =
(

x
Ns

)
rNs

s (1 − rs)
x−Ns , (25)

and the estimation of the original flow length distribution
Pr(X = x) is explained in detail in [16]. Simply, since the
flow length follows the heavy-tailed distribution, we can use
Pareto distribution with 1 as the parameter to roughly esti-
mate the distribution:

Pr{X = x} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if x < Ns

βNβs
xβ+1

=
Ns

x2
, if x ≥ Ns

. (26)

Then, we have the expectation of the original flow length

N =
∞∑

x=Ns

xP(x,Ns). (27)

Finally, we simply use the following formula to esti-
mate T in the two estimation algorithms:

T = Ts(Ns + 1)/Ns. (28)

3.4 Reasonableness of Applying the Traditional Slow
Start Algorithm

The Hybrid Slow Start algorithm [11] used in TCP CUBIC
is an improvement of the traditional slow start algorithm,
because the former, through estimating the bandwidth, elim-
inates the packet loss caused by overshooting. However, in
this paper, the traditional slow start function is applied in-
stead, which can also be seen in [10]. The reasons are listed
as follows:

• Firstly, for ME algorithm, as the transmission lasts
longer, the slow start mode becomes more trivial than
the stationary mode, and during the stationary mode the
determination of either slow start algorithm is not sig-
nificant because the algorithm only takes effect when
the cwnd size is larger than (W + 1)/(2 − β), whose
probability is very low.
• Secondly, there is little difference between applying the

Hybrid Slow Start algorithm and the traditional one to
AE algorithm because overshooting rarely occurs on
the AEC, on which the bandwidth is large.
• Thirdly, it is simpler to use this function in those two

algorithms.

3.5 Modification for AIMD TCP Versions

Our method could be adapted to AIMD TCP versions after
slight modification. The major difference between AIMD
TCP versions and TCP CUBIC lies in their congestion
avoidance mode. When there is no packet loss in the pre-
vious round, the cwnd size of the next round will increase
by a fixed value a; on the other hand, if there is at least one

packet loss during the round, the cwnd size will decrease by
a multiplicative factor b (0 < b < 1). Thus, the function FCA

in (3) will be

FCA(w, t) = bw + at/τ, (29)

where τ is the average RTT value. The (7) will accordingly
be (without SACK mechanism)

Fwin(w, r) = min(bw + ar,W), (30)

and the (19) will be

ACA =

log2 bW∑
i=1

(W−FS S (i)) +
∫ W−bW

a τ

0
W−FCA(w, t)d

t
τ

= L(b) + (1 − b)2W2/(2a), (31)

and the (22) can be modified to

tCA = τe log2 bW + τe(1 − b)W/a. (32)

Now we can conduct those two algorithms just by the
procedures introduced. In fact, it can be found that under
this circumstance, the Ew calculated in (10) will be irrele-
vant to the average RTT τ, and based on (11) we can eas-
ily obtain τ (just change the NE of the equation to the total
packet number N).

4. Evaluation

Sections 4.1 and 4.2 describe the experiments based on gen-
erated flows and real trace respectively, and illustrate their
results.

During the evaluation, the results of the two algo-
rithms are compared with those of tcptrace [17], a well-
established tool that can estimate RTT by taking bidirec-
tional trace collected in the middle of the link as input [4].
This tool can calculate RTT values very precisely because
the RTT can only be found when an ACK packet PA is re-
ceived from the other end-host for a previous transmitted
packet PB, and the acknowledgment value of the PA is 1
greater than the last sequence number of the PB. Then, the
RTT values during the whole session of this flow are aver-
aged, and the result serves as the baseline result for evalua-
tion.

4.1 Testbed Evaluation

Based on the flow data generated by the testbed deployed in
a real network, this section presents experimental results to
confirm the validity of ME and AE algorithm. The structure
of the testbed is depicted in Fig. 7. All the data commu-
nicating with the Server is forwarded by the Router and
collected by the Monitor.

The Server is connected to three clients: ClientA,
ClientB and ClientC. ClientA, ClientB and Server
are situated separately in three PoPs of one AS in China—
CERNET [18]. The links between them have large band-
width and rare packet loss; hence, both AE algorithm and

SU et al.: RTT ESTIMATION WITH SAMPLED FLOW DATA
1855

Fig. 7 Illustration of the constructed testbed.

Fig. 8 Testbed results for different file sizes.

ME algorithm can be used under these circumstances. Nev-
ertheless, ClientC, a host located in Geneva, Switzerland,
communicates with the Server through a link with small
bandwidth and high packet loss rate, so ME algorithm can
only be applied. The RTT candidates of ME algorithm dur-
ing the evaluation are generated every 10 ms.

During the experiment, the clients (ClientA, ClientB
and ClientC) use FTP to get files of various sizes (10 MB,
20 MB, . . . , 200 MB) from Server. Files of each size are
transferred several times and the results are averaged so as
to eliminate random error. Figure 8 exhibits the estimation
results based on the three groups of TCP CUBIC bulk flows
from Server to the three clients, with the error bars repre-
senting the 95% confidence interval of the average, and we
also present the RMS(relative error) for each file size. In
addition, Fig. 9 depicts the CDF (Cumulative Distribution
Function) of relative error to show the distribution of esti-
mation results over all the flows with different file sizes.

Fig. 9 CDF results of testbed for all file sizes.

Fig. 10 Deployment demonstration of the proposed method.

The results in the Fig. 9 are ideal because the relative
error of nearly all estimations is within ±0.2. What’s more,
compared with ME, AE algorithm obtains much more ac-
curate results from the flows from Server to ClientB. We
can find that once the AEC presented in Sect. 3.2 is fulfilled,
AE algorithm is more suitable for estimation on account of
its simplicity and accuracy. As a result, in our method we
use AE algorithm instead of ME algorithm under the AEC.

Figures 8(b) and 8(c) show that as the file size (i.e. flow
length) increases, the RMS(relative error) of ME algorithm
becomes more stable. This phenomenon accords with ex-
pectation, because long flows certainly reduce the random-
ness and volatility of estimation results, and result in the rel-
ative error distributed near a small value. As is presented in
Fig. 8(c), there is a gap between the curves of two averaged
RTT; in other words, smaller RTT values are achieved from
nearly all flows from Server to ClientC, as a result of the
large estimated packet number closer to the original packet
number in this circumstance, originating from the fact that
NE in (15) does not change linearly with the increase of can-
didate RTT τ, according to our investigation into the inter-
mediate results. We think that the wise choosing of RTT
candidates will overcome this problem and improve the pre-
cision of ME algorithm. We will dig into it in the future
work.

4.2 Real Trace Evaluation

The typical application scenario of our method is demon-
strated in Fig. 10. All traffic of the managed network com-
municating with other parts of the Internet is forwarded by
border routers, where flow data is collected and selected for
RTT estimation.

For evaluation, with the help of some additional facili-
ties, we capture full packet bidirectional trace from the bor-
der routers located on the border of a regional academic net-
work of the CERNET. With one-hour duration, the capture
facility collects roughly 128 GB files, namely 2.70 G pack-
ets. To simulate the sampling operation for flow data, we

1856
IEICE TRANS. COMMUN., VOL.E98–B, NO.9 SEPTEMBER 2015

use a sampling technique which is widely applied in extant
routes — systematic count-based sampling (cf. RFC 5476).
It is defined as selecting one packet out of every x packets
(denoted as “1 out-of x”, where x is the sampling period),
i.e. mth, (m + x)th, (m + 2x)th, ... are selected, where m is a
randomly chosen value between 1 and x. So, the rs used in
Sect. 3.3 is 1/x.

Our experiment has four steps:

i) The packets from the trace are grouped into flows af-
ter sampling (in practice, this step is accomplished by
routers). In this evaluation, four different sampling
periods—1 (full-packet), 4, 16 and 64 are used with
m = 1. Note that all the packets in every flow sampled
by period 64 will appear in other three flows sampled
by period 16, 4 and 1 respectively. The reason is that for
these four sampling periods with the same m (m = 1),
the systematic count-based sampling ensures that once
chosen by a larger sampling period, the packet will cer-
tainly be chosen by a smaller one†. The related four
flows form a 4-tuple, denoted as a F4.

ii) Then, we find all the Linux hosts that use TCP CUBIC,
and filter the F4 s that are not sent from those hosts with
certain ports (like 20 for FTP-DATA, 80 for HTTP and
443 for HTTPS). The flows of the left F4s are TCP CU-
BIC bulk flows and can be used to estimate RTT by our
method.

iii) From 100 to 2100, we construct 20 bins (intervals) with
the same length of 100, i.e. the interval of the #1 bin is
[100,200), the one of #2 bin is [200,300), ..., and lastly,
the one of #20 is [2000,2100). We call them F4 bins.
Then, for each bin, we find out all the F4s whose full-
packet flow length is within the interval of this bin and
randomly select 100 from them into this bin.

iv) We get the baseline RTT of each F4 by the tcptrace
based on full-packet bidirectional trace and compare it
with the estimated RTT values of the four flows in this
F4 respectively. According to our method, we use AE
algorithm if its requirement—AEC—is fulfilled; other-
wise, we use ME algorithm with RTT candidates gen-
erated for every 10 ms.

Figure 11(a) shows the evaluation results. The horizon-
tal axis represents the serial number of F4 bins. Obviously,
the larger the bin number is, the longer the flows in that bin
are. The vertical axis shows the RMS(relative error) of the
four flow groups with different sampling periods from the
100 F4s in each F4 bin. We can find that the estimation
accuracy decreases as the sampling period rises (can also
be seen in Fig. 11(b)), while generally increases with flow
length growing. To some extent, long flows can eliminate
the error caused by sampling. Besides, we believe that tak-
ing more data into estimation is another way to reduce the

†For example, with m = 1, the 65th packet will be selected by
the sampling operation with period 64, and it will also be selected
when the sampling period is 1, 4, and 16.

Fig. 11 Results of real trace grouped by different sample periods.

Fig. 12 Results of real trace grouped by different flow number (1 out-of
64).

imprecision. As is exhibited in Fig. 12, more flows used for
estimation can relieve the fluctuation of the curve and in-
crease accuracy at the same time.

5. Conclusion

This paper analyzes the transmission features of the (sam-
pled) TCP CUBIC bulk flow to propose a new RTT esti-
mation method for long-term performance monitoring. The
new method taking sampled flow data as input has many
advantages. First and foremost, it does not need extra net-
work data collection facilities since sampled flow data is
supported by most extant routers; besides, it does not re-
quire the cooperation of other networks; moreover, sam-
pling operation in nature ensures that the flow data is easy
to collect, store and process. The method comes with two
algorithms—ME algorithm and AE algorithm. The former
is capable of handling all kinds of TCP CUBIC bulk flows;

SU et al.: RTT ESTIMATION WITH SAMPLED FLOW DATA
1857

the latter is simpler and more accurate but can only be ap-
plied under AEC, indicating the bandwidth of the link is
large and packet loss rate is low. Moreover, the fact that
this method has the potential to be applied to AIMD TCP
versions with slight modification proves its significant prac-
ticality.

The results of our experiments presented in Sect. 4
demonstrate that RTT estimation can be accomplished with
our method. As the flow length grows, the error of the two
algorithms trends to be distributed near a small value; in
addition, the random error caused by sampling can be elim-
inated if the number of flows is large enough. These two
conditions can be easily fulfilled in large-scale high-speed
networks. Consequently, RTT can be measured comprehen-
sively and continuously in these networks by the proposed
method.

Our future work will focus on the applications of the
calculated RTT values, which will benefit further manage-
ment tasks.

Acknowledgment

This work is sponsored partly by the National Ba-
sic Research Program of China (973) under Grant No.
2009CB320505 and the National Natural Science Founda-
tion of China under Grant No. 60973123.

References

[1] R.R. Kompella, K. Levchenko, A.C. Snoeren, and G. Varghese, “Ev-
ery microsecond counts: Tracking fine-grain latencies with a lossy
difference aggregator,” Proc. ACM SIGCOMM 2009 Conference on
Data Communication, vol.39, no.4, pp.255–266, 2009.

[2] M. Lee, N. Duffield, and R.R. Kompella, “Not all microseconds are
equal: Fine-grained per-flow measurements with reference latency
interpolation,” Proc. ACM SIGCOMM 2010 Conference on SIG-
COMM — SIGCOMM’10, pp.27–38, 2010.

[3] Corvil, “Inter-party latency,” 2014. http://corvil.com/solutions/electr
onic-trading/inter-party-latency

[4] S. Gangam, J. Chandrashekar, Í. Cunha, and J. Kurose, “Estimating
TCP latency approximately with passive measurements,” Proc. Pas-
sive and Active Measurement, Lecture Notes in Computer Science,
vol.7799, pp.83–93, Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[5] H. Jiang and C. Dovrolis, “Passive estimation of TCP round-trip
times,” SIGCOMM Comput. Commun. Rev., vol.32, no.3,
pp.75–88, 2002.

[6] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the character-
istics and origins of internet flow rates,” SIGCOMM Comput. Com-
mun. Rev., vol.32, no.4, pp.309–322, 2002.

[7] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley,
“Inferring TCP connection characteristics through passive measure-
ments,” Proc. IEEE INFOCOM 2004, pp.1582–1592, 2004.

[8] F. Strohmeier, P. Dorfinger, and B. Trammell, “Network perfor-
mance evaluation based on flow data,” Proc. 2011 7th Interna-
tional Wireless Communications and Mobile Computing Confer-
ence, pp.1585–1589, 2011.

[9] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Systems Review, vol.42,
no.5, pp.64–74, 2008.

[10] N. Tomita and S. Valaee, “Data uploading time estimation for CU-
BIC TCP in long distance networks,” Computer Networks, vol.56,

no.11, pp.2677–2689, 2012.
[11] S. Ha and I. Rhee, “Hybrid slow start for high-bandwidth and long-

distance networks,” Proc. PFLDnet, pp.1–6, Manchester, UK, 2008.
[12] Y. Yamasaki, H. Shimonishi, and T. Murase, “Statistical estima-

tion of TCP packet loss rate from sampled ACK packets,” Proc.
GLOBECOM’05. IEEE Global Telecommunications Conference,
2005, pp.276–280, 2005.

[13] W. Bao, V.W.S. Wong, and V.C.M. Leung, “A model for steady state
throughput of TCP CUBIC,” Proc. 2010 IEEE Global Telecommu-
nications Conference GLOBECOM 2010, pp.1–6, 2010.

[14] S. Poojary and V. Sharma, “Analytical model for congestion control
and throughput with TCP CUBIC connections,” Proc. 2011 IEEE
Global Telecommunications Conference — GLOBECOM 2011,
pp.1–6, 2011.

[15] S.M. Ross, Introduction to Probability Models, 10th ed., Academic
Press, 2010.

[16] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distribu-
tions from sampled flow statistics,” Proc. 2003 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communications — SIGCOMM’03, pp.325–336, 2003.

[17] tcptrace, “tcptrace,” 2014. http://www.tcptrace.org
[18] CERNET, “China education and research network,” 2014. http://

www.edu.cn/english 1369/index.shtml

Qi Su is a Ph.D. candidate in School of
Computer Science and Engineering, Southeast
University, Nanjing, P. R. China. His research
interests are network measurement and network
management. He received B.S. degree in com-
puter science and technology from the Southeast
University, Nanjing, P. R. China.

Jian Gong is a professor in School of Com-
puter Science and Engineering, Southeast Uni-
versity. His research interests are network ar-
chitecture, network intrusion detection, and net-
work management. He received B.S. degree
in computer software from Nanjing University,
Nanjing, P. R. China, and Ph.D. degree in com-
puter science and technology from Southeast
University, Nanjing, P. R. China.

Xiaoyan Hu got her B.S. degree in software
engineering from Nanjing University of Science
and Technology in 2007 and her M.S. degree
in computer architecture from Southeast Univer-
sity in 2009. She is now a Ph.D. candidate in
Southeast University focusing on the design of
NDN in-network caching.

http://dx.doi.org/10.1145/1594977.1592599
http://dx.doi.org/10.1145/1851182.1851188
http://corvil.com/solutions/electronic-trading/inter-party-latency
http://dx.doi.org/10.1007/978-3-642-36516-4_9
http://dx.doi.org/10.1145/571697.571725
http://dx.doi.org/10.1145/964725.633055
http://dx.doi.org/10.1109/infcom.2004.1354571
http://dx.doi.org/10.1109/iwcmc.2011.5982608
http://dx.doi.org/10.1145/1400097.1400105
http://dx.doi.org/10.1016/j.comnet.2012.04.010
http://dx.doi.org/10.1016/j.comnet.2012.04.010
http://dx.doi.org/10.1109/glocom.2005.1577633
http://dx.doi.org/10.1109/glocom.2010.5684172
http://dx.doi.org/10.1109/glocom.2011.6134001
http://dx.doi.org/10.1016/b978-0-12-375686-2.00007-8
http://dx.doi.org/10.1145/863955.863992
http://www.tcptrace.org
http://www.edu.cn/english_1369/index.shtml

