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Abstract 
 

Online flow distribution monitoring is critical in 
intrusion detection. However, high-speed traffic monitoring 
is significantly challenging for a monitoring system with 
limited resources (e.g., memory and processing cycles). 
Flow and packet sampling techniques are commonly 
adopted to tackle this problem. Flow sampling can reduce 
the variance of the estimators in short flows； However, it 
increases the estimated error for the heavy-tailed flow. On 
the other hand, passive sampling presents an opposite 
results. In this paper, we propose a novel flow sampling 
approach by taking advantage of both packet and flow 
sampling techniques. An effective flow estimator is also 
introduced to estimate flow distributions. Extensive 
simulations are conducted with real traffic data from 
CERNET backbone network traffic traces to evaluate the 
system performance and compare it with other traffic 
sampling approaches. 
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1   Introduction 
 

It is important to measure flow distribution online in 
intrusion detection. Flow information (e.g., the number of 
flows and the length of each flow) presents the critical 
information in detecting potential security threats such as 
traffic worms and DDoS attacks. However, high-speed 
traffic monitoring is significantly challenging for a 
monitoring system with limited resources (e.g., memory 
and processing cycles) several sampling methods have 
been proposed to control the resource consumption of the 
monitoring system. Packet sampling and flow sampling are 
the two most commonly adopted approaches. 

Sampling entails an inherent loss of information, and 
statistical inference is commonly adopted to recover the 
lost information. In a packet sampling approach, if the 
packet sampling ratio is p, then the probability that the 
flow with the length of k is sampled is 1-(1-p)k, which 
shows that the probability of the sampled heavy-tailed 
flows is larger than that of the short flows, and the 
probability of a sampled packet also influences the 
probability of the sampled flows. The packet sampling 
method will lose a significant amount of short flow data, 

but retains the heavy-tailed flow data. Thus, the estimated 
error of short flows is larger than that of the heavy-tailed 
flows. Further, it is difficult to estimate the number of 
original flows. On the other hand, in a flow sampling 
approach, since each flow has an equal probability of 
occurrence q, the long flows have the same probability as 
short flows. The number of the heavy-tailed flows is very 
small, so the probability of the heavy-tailed flows being 
sampled is also very small, and their estimated error can 
easily exceed the predefined threshold. Additionally, the 
flows that are kept by the sampling process are the same as 
the original flows, all the marginal flow properties, and in 
particular the flow distribution can be readily estimated 
from the observed sampling traffic. 

 
Figure 1 shows the reducing direction for different traffic 

sampling methods, where the X axis shows flow length, and 
Y axis is the number of active flows. A packet sampling 
method reduces the length of the flow in X axis direction. If 
the length of an original flow reduces to 0, then the flow will 
not sampled, and the record of the flow will be disappeared. 
Flow sampling method reduces the number of flows. If the 
number of flows of a particular length reduces to 0, then the 
flow records of the length will disappear. Thus, if a point 
approaches to the Y axis, then it may disappear from the 
figure when using packet sampling. Similarly, if a point 
approaches to X axis, then it will disappear when using flow 
sampling. Figure 2 (a) shows that the length distribution of 
short flows in the flow sampling set is very similar to that of 
the original traffic, but the distribution of the heavy-tailed 
flows has lost its original character. Conversely, the 
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heavy-tailed distribution of the packet sampling set in the 
figure 2(b) is very similar to that of the original traffic in the 
figure 1, but the short flows in the packet sampling set is not 
an accurate estimate of  the original traffic. 
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Fig. 2. (a) Distribution of Flow Sampling set 
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Figure 2 (b) Distribution of Packet Sampling set 
 

In order to improve the estimate, accuracy for both the 
short flows and heavy-tailed flows, we propose a hybrid 
sampling approach to optimize the trade-off between the 
overall estimate accuracy of flow distribution and the 
available system resources. Our approach can intelligently 
estimate the short flows by adopting flow sampling, and 
recover the heavy-tailed flow distribution by using packet 
sampling. The rest of this paper is organized as follows. In 
section 2, we discussed the related work. In section 3, we 
classify three types of flows: namely short flows, 
heavy-tailed flows, and middle flows, and present different 
estimation methods accordingly. We analyze the 
computational complexity of our algorithm. Section 4 
shows the evaluation results on estimation accuracy and 
computational complexity of our system by using real 
traffic from the CERNET backbone. We conclude our work 
in Section 5. 
 
2.   Related Work 

 

The IETF Packet Sampling working group (PSAMP) [1] 
is chartered to define a standard set of capabilities for 
network elements to sample subsets of packets by statistical 
and other methods. Furthermore, sampling techniques have 
been employed in network products such as Cisco’s 
Netflow [2]. 

The problem of detecting the flow distribution using 
sampling technique includes the detecting heavy-tailed 
flows, the number of flows, and the frequent items. Hohn 
[3] has proved that it is very hard to estimate the flow size 
distribution accurately from sampled traffic. Duffield [4] 
develop a model to estimate the distribution of flow, but he 
didn’t give an accuracy proof, he also studied the statistical 
properties of packet-level sampling using real-world 
Internet traffic traces. This is followed by [5] in which the 
flow distribution is inferred from the sampled statistics. 
After showing that the simple scaling of the flow 
distribution estimated from the sampled traffic is in general 
not accurate, the authors propose an EM algorithm to 
iteratively compute a more accurate estimation. This scaling 
method is simple, but it uses the sampling properties of 
SYN flows to estimate TCP flow frequencies; The EM 
algorithm does not rely on the properties of SYN flows and 
hence is not restricted to TCP traffic, but its versatility 
comes at the cost of computational complexity. Ribeiro [6] 
proposes a systematic approach, using a fisher information 
metric and a Cramer-Rao bound, to understand the 
contributions that different types information within 
sampled packets have on the quality of flow-level 
estimates.  

Estan [7] presented a family of bitmap algorithms for 
counting active flows. The measured flow numbers and the 
distribution of their lengths can be used to evaluate gains 
in deployment of web proxies [8], and determine 
thresholds for setting up connections in flow-switched 
networks [9]. 

Estan [10] has proposed a different packet sampling 
scheme in order to better capture the statistics of longer 
flows. Estan gives two algorithms to detect heavy-tailed 
traffic: sampled & hold and multistage filter. Kumar [11] 
proposed a novel SCBF that performs per-flow counting 
without maintaining per-flow state in and an algorithm for 
estimation of flow size distribution [12]. Raspall [13] 
present a shared-state sampling algorithm to detect large 
flows in high-speed networks, this algorithm can achieve a 
decrease in the detection probability for small flows, 
without affecting the detecting probability for large flows. 

This paper presents a novel method for estimation of 
flow size distributions from sampled flow and sampled 
packet Statistics. Our method can be used not only to 
estimate TCP flows but also can be extended to general 
flows. Our primary contribution is to demonstrate that we 
can accurately estimate flow distribution is in practice 
using a combination of packet sampling and flow 
sampling. We present this work using five steps: The first 
step establishes the statistics of the original flow. The 
second step classifies short flows and heavy-tailed flows 
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based on the sampling theory. (We also define middle 
flows between short flows and heavy-tailed flows.) The 
third step estimates the full distribution of short flows 
using flow sampling, and the full distribution of 
heavy-tailed flows using packet sampling. The fourth step 
recovers the distribution of middle flows by the method of 
least squares, based the flow sampling set. Finally, we 
estimate the distribution of flow size. 
 
3.   Hybrid Estimated Flow Distribution 
Algorithm  
 

In this section, we propose a flow classification model 
for estimating the total number of active flows and 
accordingly categorizing the monitored flows into the 
short, middle and heavy-tailed classes. Then we design a 
hybrid system to estimate the short and middle flow 
distribution by using the flow sampling set, and the 
heavy-tailed flow distribution by using the packet 
sampling set. Finally, we discuss algorithm complexity. 
 
3.1   The Design of Flow Number Estimator  
 

Assuming the number of the active flows are n, m and x  
in the flow sampling set , the packet sampling set , and 
the intersection set X ( Ψ∩Φ=Χ ) respectively. The 
number of flows in the original traffic set  is N. So we 

have: Ψ⊇Ω , Φ⊇Ω , and accordingly there are N-n flows 
in the set , which don’t belong to set  (because the 
element in set  is sampled from the set  randomly). The 
length distribution g(i) in the set  is the approximately 
same as the length distribution f(i) in the set , thus we 
have equation (1). 

 
)()( ifig ≈         (1) 

We can consider that the set X is sampled from the set  
with the probability p, which is equal to the sampling 
probability which the set  is sampled from the set .  

The number n-x of flows in the set  are not in the set X, 
so n-x flows are not sampled from the set X, and N-m 
flows in the set  are not sampled from the set . n-x, and 
N-m can be computed by the equation below: 
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 According to the above two equations and equation 
(1), we can obtain a flow number estimator as shown in the 
equation (1), where M is the size of the longest flow, N̂  is 
the estimated value of the number of the active flows, and 
m is the number of the active flows in the packet sampling 
set, x expresses the number of the active flows in the 
intersection set between the packet sampling set and flow 

sampling set, and f means the ratio of the flow sampling to 
the original traffic. 

 NmNnxn ˆ/)ˆ(/)( −=− , xmf /= ,  
fnxmnN ⋅=⋅= /ˆ       (2) 

  Theorem 1: From the hybrid sampling set produced with 
independent random packet sampling and flow sampling at 
a flow sampling rate which is 1/f, so the estimator of the 
number of flows with a relative standard deviation is 

mxn /1/1/1 ++ .  
  Proof:  

Let N be the total number of flows sent during the 
measurement interval. With a flow sampling rate of p, the 
expected number of flows n. The number of those sampled 
has a binomial distribution with mean n=N*p, and variance 
p(1-p)N. Since we get the estimate for the number of flows 
in the original traffic by multiplying the number of sampled 
flows by f, f=m/x. Let the packet sampling ratio be q, and 
the flow sampling ratio of x from m 1/f. So the variance of 
m is q(1-q)N, and the variance of x is 1/f(1-1/f)qN. 

xmNpN /ˆ ⋅⋅= , so the standard variance of the estimate N 
will be  
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, so its relative stand deviation is mxn /1/1/1 ++ . 
 
3.2   Estimated Short Flows Distribution Based on 
Flow Sampling  
 

Assuming the ratio of the flows with length i in the 
original traffic and the flow sampling set are f(i) and g(i) 
respectively, and the flow sampling probability is p, so all 
flows with length i are considered a subset of the original 
traffic set. Equation (3) defines a new variable Yij to record 
the ith flow in the traffic set whose length is equal to j or isn’t 
j. 
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In fact, we can be easy to know than Yi is the number of 
flows with i packets, f(i) is the frequency of flows with i 
packets in the original traffic set, and g(i) is the frequency of 
flows with i packets in the flow sampling traffic set. We 
have the following theorems. 

Theorem 2: g(i) is a estimator of f(i) in the original 
traffic, and its estimated variance is 
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Theorem 4: The estimation of the number of the active 
flows is:  
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Thus, the number of the flows with length i can be 
estimated from the flow sampling immediately. 
Accordingly, we have the following equation (5). 

min)(,)()(ˆ flowiyfiyiY ≥⋅=      (5) 

 
If y(i) >= flowmin, y(nmin+1) < flowmin (i=1,…,nmin), then 

the flow length is equal to ],1[ minni ∈ . We can use equation 
(5) to estimate the distribution of short flows. For example, 
if the relative error of the estimated flow length is 25%, and 
the given confidence level α= 90%, then flowmin=44. 
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3.3   Estimated Distribution of Heavy-tailed Flow 
on Packet Sampling  
 

Assuming the packet ratio of the ith flow in the original 
traffic and packet sampling set are f(i) and g(i) 
respectively, and the packet sampling probability is p=1/n, 
all packets sampled one of ith flow are considered a subset 
of the original traffic set. Thus, we can define each packet 
in equation (6). Equation (6) defines a new variable Yj to 
record the jth packet in the traffic set which is belong to a 
flow with i packets or not. 
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Using equation (4), we can compute the minimal length of 

the packet sampling flow 2

2

min r
packet αµ
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heavy-tailed flows by packet sampling, where packetmin 
represents the minimal length of the packet sampling flow. 
Thus, we can use packet sampling to estimate the 
heavy-tailed length of the original traffic immediately. 

Let the packet sampling ratio be 1/n, then the estimation 
of flow length in the original traffic set is packetmin=*n. Let 

kF  be an original flow with k packets, lS  is a sampled flow 
with l packets from kF , then lS  follows a binomial 
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Fig. 3. the relationship between packet sampling and 

original sampling in the heavy-tailed flows. 
 
Where Ni = i*n, Ni’ = i*n+(n-1), The original flow of 

length in the area [Ni, Ni’] can be sampled to length i, which 
is the maximal probability. Let the length of an original 
flow be k, k=m*n+l, where m is a positive integral number, 

0≥> ln . The packet sampling flow length of the maximal 
probability is     mnlnmnk =+= /)*(/ , so the length of its 
original flow is ]1,0[, −=+⋅= nllnmk . Based on the 
maximal probability theory, the length m of sampling flow 
is sampled from the original flow set 

[ ])1(, −+⋅⋅=Κ nnmnmm . In the set Km, the probability that 
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of length k  is  
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          (7) 
If we let the number of the length m flows in the packet 

sampling set be g(m), then the estimated number of the 
length m*n+i flow in the original traffic set is  

 imi wmgn ,)(ˆ ⋅=        (8) 
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i
ins , then g(m)-s flow aren’t estimated in the 

equation (8). In this paper, we distribute the g(m)-s flow 
into the area Km randomly, based on the weight equation 

(7). The cumulative function of the weight is ∑
=

=
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i
imkm wW

0
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so 11, =−nmW . Let variable be a random function that 
produces random data in the area [0, 1]. If 

imim WrandomW ,1, () ≤<− , then 1 is added to x(i). The above 
procedure is computed g(m)-s times, so we can estimate the 
number of the original flow in the area of Km in the equation 
(9). 
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3.4   Estimated Medial Length Flow  
 
If the length of short flow is less than flowmin, then we can 

use equation (5) to estimate the length distribution, and if 
the length of heavy-tailed flows is larger than packetmin*n, 
then we can use the equation (9). In the section, we will 
analyze the estimation method that the length of flow is in 
the range of A=(flowmin, packetmin * n). If 
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Where ni is the number of length i flows in the range of A. 
The estimated number of the active flows in the range of 
[k,l] is fsni ⋅=ˆ , The distribution of flow length is 
heavy-tailed, so α−> xxXP ~][ , 20, <<∞→ αx . The 
simplest heavy-tailed distribution is the Pareto distribution. 
and its probability function is 1)( −−= ααα xkxp , α, k>0, x≥k, 

and its cumulative function is α)(1][)(
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Using the probability p(x), we can obtain the differential 
coefficient equation 2)2()( −−+−=′ αα αα xkxp . 
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If x is larger than k, then 1≈∆ . So we can use a linear 
that approaches the length distribution in a small range, that 
is,  we can use the method of least squares to approach to 
point (i, in̂ ), ],[ lki ∈ . 

ibaiN ⋅+=)(ˆ        (10) 
These points (i, in̂ ), ],[ lki ∈  are close to the equation 

(10), so we can compute the parameter a, and b in the 
equation (10) by the below equation. 
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3.5   Algorithm Complexity 

 
In the active flow number estimation algorithm, if the 

number of the active flow in the flow sampling set is n, then 
the size of the packet sampling set is m. Accordingly, the 
time complexity of the algorithm is O(n+m). For the 
estimation algorithm for the short flows as shown in 
Equation (5), we only recover the length distribution of 

Original 
Traffic 

Packet 
Sampling 

Ni Ni
’ Ni+1 Ni+2 Ni+3 N’

i+1
 N’

i+2
 N’

i+3

i i+1 i+2 i+3
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flows whose length is less than flowmin, thus the time 
complexity of the algorithm is O(flowmin). For the 
estimation algorithm for the heavy-tailed flows as shown in 
Equation (9), it computes the packet sampling flow from 
packetmin to m, if every k packet samples one packet, thus, 
the time complexity of the algorithm is O(k*(m-packetmin)).  

The estimation algorithm for the middle flows as shown 
in Equation (10) estimates the flow with the length between 
k*packetmin and flowmin. The distributed length space is 
divided into several subsections such that each subsection is 
estimated by the method of least squares, Thus, the time 
complexity of the algorithm is O((packetmin*k-nmin)2). 

Using the methods above, we can obtain the total time 
complexity is O(n+m)+ O(flowmin)+ O(k(m-packetmin))+ 
O((packetmin*k-flowmin)2), Conclusively, the total time 
complexity of approach is O(n2+m). 

 
4   Performance Evaluation 

 
We conducted extensive experiments to evaluate our 

system performance. We collected packets from the 
CERNET backbone network with 1Gbps bandwidth. The 
48 bytes packet header of every packet was intercepted. We 
measured two groups of original traffic from the CERNET 
backbone network, deterministically took one in every 16 or 
32 packets (systematic sampling) as packet sampling sets 
from the original traffic, and got the flow sampling set by 
mask length 4 bits and 5 bits to obtain the flow sampling 
rate 1/24=1/16, and 1/25=1/32. Table 1 is the detailed 
information of the measured and sampled data.  

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

Original Traffic
Estimated Traffic

 
Fig. 4. the Comparison between Original Traffic and 
Estimated Traffic Using the First Measured Traffic Data. 
The estimated distribution using our method is compared 
with the length distribution of original traffic. 
 

In this paper, we define IP flow as a set of packets with 
the same 5-tuple {IP protocol; source and destination 
address; source and destination port}, and with a measured 
duration. The packet sampling method used is to take one in 
every n packets from the original traffic. We define a hash 
function, whose input is the 5-tuple fields {IP protocol; 
source address; destination address; source port; destination 
port}, and its output is an 8 bit flow. We use a defined m bits 

mask to match the hash value to get a sampling rate 1/2m.  

Table 1. this table is the detailed information of the 
measured and sampled data. 

Sequence 1 2 3 4 
Duration 00:00:18- 

00:03:03 
10:00:06- 
10:05:26 

00:00:18- 
00:03:03 

10:00:06- 
10:05:26 

Sampling 
Length 16 16 32 32 

Mask 
Length 4 4 5 5 

Total 
Packet # 32097160 64239632 32097160 64239632 

Packet # 
of flow 
sampling 

1978792 3836233 1142185 2041066 

Packet # 
of packet 
sampling 

2006150 4015022 1003062 2007483 

Packet # 
in the 
interaction 

123599 240465 35626 64403 

 

Table 2. the Estimation Result of Flow Distribution 

Sequence 1 2 3 4 
Total 
Flow #  

678028 1926296 678028 1926296 

Flow # in 
Packet 
Sampling 

203624 462271 158691 315998 

Flow # in 
Flow 
Sampling 

42640 119894 22231 60527 

Flow # in 
Interaction 
Set 

12781 28728 5599 9747 

Estimation 
Of Flow # 

679330 1929250 630087 1962287 

Table 2 is the estimated result of our method, and 
compares it with the EM algorithm [5]. Figure 4 and Table 3 
show that the estimation accuracy of our algorithm is close 
enough to that of the original traffic and is much more 
accurate than that of EM algorithm. In the Table 3, two 
performance metrics is introduced. FlowError metrics is to 
estimate accuracy of the number of flows, and WMRD 
metrics is to estimate the distribution accuracy. Equation 
(11) and Equation (12) give the two metrics. 

FlowError metrics: We use a FlowError metrics as the 
evaluation metric to estimate accuracy of the number of 
flows. Suppose the number of original flows is N, and our 
estimation of this number is N̂ . The value of FlowError is 
given by: 

%100/ˆ ×−= NNNFlowError     (11) 
WMRD metrics: We use WMRD as a evaluation metric 

of distribution estimation accuracy. Suppose the number of 
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original flows of length i  is in  and our estimation of this 

number is in
^

. The value of WMRD is given by: 
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Table 3. Estimated Accuracy between EM and Hybrid 
Algorithm 

Sequence 1 2 3 4 
Ratio of 
packet 
Sampling 

3861343 7610790 2109621 3984146 

Sampling 
ratio in 
EM 

4012160 8029954 2006081 4014978 

Theory 
Error by 
Theo. 1 

1.01% 0.67% 1.52% 1.11% 

FlowError 0.19% 0.15% 7.07% 1.87% 
WMRD of 
Hybrid 
Sampling 

3.8% 1.6% 11.4% 3.1% 

WMRD of 
EM 
Algorithm 

24% 18% 25% 19% 

 
5   Conclusion 
 

We present a flow estimation algorithm using hybrid 
sampling technique, which combining both flow and packet 
sampling, to estimate the flow distributions. Two kinds of 
sampling were used, I.I.D. packet sampling, and I.I.D. flow 
sampling, with a given sampling probability. Exact 
theoretical estimated techniques were derived.  As we 
proved, the flows that are kept by the flow sampling 
procedure are identical to the original ones, and the 
intersection flow set between flow and packet sampling set 
has the same distribution as in packet sampling set, we can 
count the number of active flows in the flow sampling set, 
the packet sampling set, and the intersection set between 
packet sampling and flow sampling respectively. According 
to the active flow numbers in the three sets, we can infer the 
number of active flows in the original traffic set, and the 
sampling ratio between flow sampling set and original 
sampling set, using sampling theory. To achieve the 
required accuracy, we take full advantage of flow sampling 
and packet sampling, and use the flow sampling to estimate 
the distribution of short and heavy-tailed flows. We recover 
the distribution of flows between short flows and 
heavy-tailed flows using the method of least squares based 
on the flow sampling set. Finally, we used CERNET 
backbone traffic to analyze the performance of the 
algorithms and compare them with others algorithms. The 

experimental results show that our algorithms outperformed 
both packet and flow sampling approaches on the 
estimation accuracy of flow distributions. 
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