
DISTRIBUTED LOW-INTERACTION HONEYPOT SYSTEM TO DETECT BOTNETS
AHMAD JAKALAN

1, GONG JIAN
2

{ahmad, jgong} @njnet.edu.cn
Jiangsu Key Laboratory of Computer Networking Technology,

Southeast University, Nanjing, China

Abstract: The objective of this research is to design and develop a distributed low-
interaction honeypot to detect the existence of botnets in the monitored network, and to
provide clues for the threat evaluation by botnets propagation estimation. Running a low-
interaction honeypot provides a good feature that there is a big evidence of the existence
of botnet. This evidence is the malware (botnet) sample collected by the honeypot. The
approach followed in this research for detecting botnets is to analyze all the collected
malware samples to know their types, and to detect if any botnets exist between all the
collected malware samples. So the first target is collecting as more as possible malware
samples, and then analyzing them to spot the botnets samples. The accurate results we get
depends on not only one source of analysis, it depends on the multiple sources especially
the behavior analysis of the collected malware samples.

Keywords: botnet detection, honeypot, network security.

1. Introduction

Recently broadband Internet connections became very common even for home
users, normally these users have little or no information about internet security, and so
they are the most desired target for most internet attacks by different types of malware.
Malware is a term that means software or a piece of software that serve malicious
purposes. Malware is often used to infect the computers of unsuspecting victims by
exploiting software vulnerabilities or tricking users into running malicious code. Malware
can exploit and compromise a system in many ways, either attacking operating systems
vulnerabilities or remote services through Internet or deceiving the user to execute it by
clicking on a fake link or opening an e-mail attachment. There are different
classifications of malware depending on its propagation method, activity, goals. As most
of security researchers classify it as the most “evil-minded” botnet are now the greatest
challenge in for researchers. The term botnet is used to define networks of infected end-
hosts, called bots that are under the control of a human operator commonly known as a
botmaster or bot-herder. Such malware is not only a constant threat to the integrity of
individual computers on the Internet; for example they can bring down almost any server
through distributed denial of service, the combined power of many compromised
machines is a constant danger even to uninfected sites. Botmasters use bots for a variety
of attacks. For example carrying out Distributed Denial-of-Service (DDoS) attacks,
sending out millions of spam or phishing e-mails, Attacks against infected hosts often
hurt their performance and may include capturing private information or credentials for

1 Ahmad Jakalan, Master’s Degree student in Computer Networks Security, Southeast University, Nanjing,
China. Tel: 008615366165651. Fax: 00862583694035. Email: ahmad@njnet.edu.cn,
jakalan982@hotmail.com.
2 Gong Jian, Chief of Jiangsu Key Laboratory of Computer Networking Technology, Professor in Computer
Networks in Southeast University. Email: jgong@njnet.edu.cn.

identity theft. It has gone the time that hackers try to demonstrate their technical
prominence among others, instead of, botnets are predominantly used for illegal activities.
Every compromised machine a so called bot establishes a connection to a remote control
network by which the attacker can issue arbitrary commands. Typical examples for these
remote control networks are IRC networks, HTTP servers, and P2P.

Malware detection has become difficult with the use of compression, polymorphic
methods and techniques to detect and disable security software. Those and other
obfuscation techniques pose a problem for detection and classification schemes that
analyze malware behavior. The objective of this paper is to present our work in designing
and developing a distributed low-interaction honeypot to detect the existence of botnets
in the monitored network, and to provide clues for the threat evaluation by botnets
propagation estimation.

2. Types of honeypots

The first step to study malware and its malicious activities is to collect malware
samples. Security researcher have invented and deployed several ways and technologies
to collect malware, either by setting up a vulnerable system to wait for attacks, or
crawling web pages for malicious code stored on servers. Indeed, the effective method
recommended to collect malware samples depend firstly on the spreading model of the
malware itself, Automated Malware particularly means malware that spreads
automatically over the network from machine to machine by exploiting known or
unknown vulnerabilities. The main tool recommended for this type to collect malware in
an automated fashion today is so-called honeypots. A honeypot is an information system
resource whose value lies in unauthorized or illicit use of that resource; they are the
vulnerable systems waiting for attacks. The idea behind this methodology is to lure in
attackers such as automated malware and then study them in detail. Honeypots have
proven to be a very effective tool in learning more about Internet crime like botnets.
There are two general types of honeypots:

1. Low-interaction honeypots this type offers limited services to the attacker. They
emulate services or operating systems with a low level of interaction which varies
with the implementation. The risk of implementing this type of honeypots tends to
be very low, because of that its main intention is to capture harmful code samples,
so usually do not require too much interaction. Deploying and maintaining low-
interaction honeypots tends to be easy. A popular example of this kind of
honeypots is nepenthes. With the help of low-interaction honeypots, it is possible
to learn more about attack patterns and attacker behavior.

2. High-interaction honeypots offer the attacker a real system to interact with. The
risk of deploying this type of honeypots tends to be higher than that of low-
interaction honeypots, so it’s required to establish precautions and special
provisions are to be done to prevent attacks against system. They are normally
more complex to setup and maintain. The high-interaction honeypots main
intention is to understand the attack scene, concerned that the attacks on the
process, it requires a strong ability to interact with the attacker. The most common
setup for this kind of honeypots is a GenII honeynet.

 Nepenthes is a low-interaction honeypot like honeyd or mwcollect. Meaning it is
not a fully blown Operating System with live running services. Instead Nepenthes is
designed to run on Linux and it emulates known vulnerabilities in the Windows OS that
worms use to propagate. The emulated vulnerabilities cannot be used to attack the
underlying Linux OS, so nepenthes requires low maintenance. The worm payload used to
infect Windows machines are downloaded and stored as binary files for later analysis.
The downloaded payload can also be sent by e-mail to Norman Sandbox, Anubis sandbox,
and CW Sandbox for evaluation. Also nepenthes is a scalable honeypot, this is because of
its ability to be configured to listen to a numerous number of IP addresses. Nepenthes is
modular. It has modules for resolve dns, emulate vulnerabilities, download handlers,
submit handlers, trigger events, shellcode handler...

Nepenthes is useful to capture new malware samples spreading by exploiting old
vulnerabilities but still useless for capturing samples of malwares that exploit new
vulnerabilities, that is simply because these vulnerabilities are not emulated yet, but at the
same time it has the ability to include more vulnerabilities modules. The main focus is to
collect the malware binary, download it, store it for the further in-depth analysis, so
nepenthes is not designed for any human interaction. Nepenthes does not emulate the full
services for the attacker to interact with because the main idea is to offer only as much
interaction as is needed to exploit a vulnerability, this can be considered as one of the
limitations of low-interaction honeypot because in this case it’s easy for the advanced
botnets to detect the existence of honeypot.

3. Infrastructure

Figure 1: distributed low-interaction honeypot

The deployed system is designed as shown in figure 1; it consists of at least one

Linux server machine with nepenthes installed on it. We have installed two machines the
first running Red Hat Enterprise Linux AS release 4, with nepenthes-0.2.2. On the other
machine we have installed Linux Ubuntu server with nepenthes-0.2.2 also. The two
machines form a distributed farm of nepenthes honeypots each one collects malware samples
and send it via http_submission to a central machine we can call it malware samples central
database server. Configurations on the nepenthes servers include adding a range of IP addresses
(complete scope C of IP addresses for each honeypot) to increase the probability of catching the
spreading malware. It’s possible to face some errors binding ports, that means that the port in

listening to the real service for example if you get error binding port 25 that means that
sendmail is running and it should be closed to make nepenthes listen to that port.

Each machine (nepenthes honeypot nodes) has two NIC (Network Interface Card) one

is allocated to the local login dedicated for the management, and the other is connected directly
to the internet without any filtering on the gateway to enable the honeypot to receive as more as
possible network attacks. The second NIC is configured to use a complete list of class C
network IP addresses each one referred to as nepenthes honeypot sensor.

4. Malware collection
 Nepenthes Honeypot is set up to listen to a number of ports which the vulnerability
modules expect to receive a worm attack through. Nepenthes Honeypot is a passive honeypot,
means that it will not invite worms to hack the machine; instead it should wait until one of its
vulnerable open ports is scanned by the worms, then the source of infection will send the
shell_code which will trigger the machine to download the malware code, at this time the
honeypot will log a download attempt of new malware. On the accomplishment of malware
download, the honeypot Store the sample in binaries named with its md5-hash and logs a
successful download, then the file with the information of some of useful information are
submitted to the malware database server.

Figure 2: Nepenthes honeypot malware collection steps

All nepenthes nodes are connected to the central machine via http_submission, This

machine collects all the information from the distributed nepenthes network. The central
machine runs the administration Interface and is capable to submit the collected malwares to
online sandbox systems for analysis and to receive the analysis reports from them, in addition
to scanning the malwares with some known antivirus systems. The http_submission is
implemented as a PHP code to be requested by other honeypot nodes by configuring the
nepenthes honeypot to request this http page as soon as it has a new malware, the new malware
binary code is submitted to the malware database server in addition to the source of infection IP
address, honeypot sensor IP address, md5-hash. One malware can be collected many times
from the source of infection, so each time the information are logged but only one time the file
is submitted to the malware server.

For a period of about one year we have collected more that (2500) different malware
samples, we had on one of the honeypots (the main honeypot) which is always run more than
(215k) download attempts, and more than (21k) successful downloads. But the other honeypot
was run for two periods each one of about ten days. In the first run from 2010/11/04 to
2010/11/14 it has collected two new different malware samples which are already collected by
the first nepenthes honeypot. In the second run from 2010/12/05 to 2010/12/15 it has collected
also two new different malware samples but this time both the new collected malware samples
haven’t been collected by the first nepenthes honeypot.

0

5000

10000

15000

20000

25000

20
09

-D
ec

em
be

r

20
10

-J
an

uar
y

20
10

-F
ebr

ua
ry

20
10

-M
ar

ch

20
10

-A
pr

il

20
10

-M
ay

20
10

-J
un

e

20
10

-J
uly

20
10

-A
ug

us
t

20
10

-S
ep

tem
be

r

20
10

-O
ct

ob
er

20
10

-N
ov

em
be

r

20
10

-D
ec

em
be

r

20
11

-J
an

uar
y

20
11

-F
ebr

ua
ry

Submissions

Figure 4: The total number of the successful
download of malware binaries

0

500

1000

1500

2000

2500

3000

20
09

/1
2/

1

20
10

/1
/1

20
10

/2
/1

20
10

/3
/1

20
10

/4
/1

20
10

/5
/1

20
10

/6
/1

20
10

/7
/1

20
10

/8
/1

20
10

/9
/1

20
10

/1
0/

1

20
10

/1
1/

1

20
10

/1
2/

1

20
11

/1
/1

20
11

/2
/1

Malware Sample

Figure 3: The total number of the collected
malware binaries

 Figures 3 and 4 show comparison between the total number of the collected malware samples
and the number of successfully downloaded malware binaries with a percentage of about 1/10, this is
because many malware files were submitted many times on different sensors of the honeypot. The
following table show top-ten downloaded malware samples according to the number of submissions.

Malware md5 Number of submissions First date Last Date

7d99b0e9108065ad5700a899a1fe3441 4992 2010/2/27 2010/11/15
98eb0fdadf8a403c013a8b1882ec986d 1844 2010/2/11 2010/9/22
1b7012e6f8abd316360694544074033b 1611 2011/1/3 2011/1/4
fb486908b086c67488dab1deb871f706 1235 2011/2/5 2011/2/5
2aa635dda735bbbb560b12a10f6a764c 746 2010/1/31 2010/2/1
fd28c5e1c38caa35bf5e1987e6167f4c 680 2010/6/12 2010/11/3
7d3fcccb077e7fe87e3f5d3483bc6f0f 555 2010/6/13 2010/7/9
1085f60dabfe6df63ec98ae3ad2860d0 491 2010/1/16 2010/2/2
4f86d95b1b57bd0f5f2e288de68547a1 458 2010/1/29 2010/2/4
e269d0462eb2b0b70d5e64dcd7c676cd 433 2010/2/11 2010/8/4

Table 1 : Top-ten malware submissions

5. Malware analysis
 Depending on antivirus gives a little information about the collected malware
samples, even it may give false results. Antivirus scan depends on Virus Signature. A
signature is an algorithm or hash (a number derived from a string of text) that uniquely
identifies a specific virus. Most antivirus software are not able to detect zero day
spreading malwares, they need to be added to the signatures database before they can be
detected, so it’s not enough to depend only on antivirus and it’s important for security
researchers to analyze the new collected malware.

Analyzing unknown executables is divided into two broad categories: static
analysis and dynamic analysis. In static analysis the program’s binary code is
disassembled first, then, both control flow and data flow analysis techniques can be
employed to draw understand the functionality of the program. Dynamic analysis is the
process of observing the code during run-time to determine the purpose and functionality
of the malware sample. This manner has an advantage that the code is actually executed.
Thus, dynamic analysis is immune to obfuscation attempts and has no problems with
self-modifying programs. But still there is a problem in building the suitable environment
in which the binary executable file can be executed safely without affecting the other
parts of the network. Running malware directly on a real machine which is part of
network or connected to the internet could be disastrous as the malicious code could
easily escape and infect other machines. In addition, reinstalling the operating system on
the machine after each dynamic test run is not an efficient solution because of the
overhead that is involved. To solve these problems, sandbox techniques are used, sandbox
is a secured environment which emulates real world environment to enable researchers to
execute and observe malicious code securely. Having private sandbox is very useful but
building sandbox tends to be very complicated, still there is the ability to depend on many
available third party online sandboxes, we used two of them to get reports from different
sources for the accurate analysis of malware samples, the first one is Anubis, and the
other is Joebox. Both of them enable submitting the malware sample and they return back
the analysis report. Normally analysis reports are divided into many categories like:
General Information about the malware sample like file size and time to perform the
analysis, File activities, Registry activities, Services activities, Process activities, in
addition to the network activity part which is the most important for the network security

 The main characteristics of bots are the networks behavior, so we pay attention

on the network behavior section of the report. All the network behavior of the analysis
report is collected with a multiple submissions of each malware sample in different times
to multiple sandboxes. This will provide more accuracy to our results. Because each
malware is executed in the sandbox alone to observe changes on the operating system and
the network activity, and the malware can’t be executed for a long time, in addition to
that botnets are not always active, they are just waiting for the command of the botnet
controller, so It’s useful to execute the malware sample many times and collect the
network activities of the analysis reports of the multiple executions. Most of the existing
botnet controllers use IRC to communicate with their zombies. The table in the appendix
shows a brief description of some randomly selected malwares that show botnet behavior.

6. Conclusion

In this paper we have presented our work in detecting the existence of botnet by
implementing a distributed low-interaction honeypot. This work show the importance of
collecting and analyzing malware and how the behavior analysis shows information can’t
be obtained by only scanning the malware files by antivirus. The future work includes
doing the complete work automatically.

7. References:
[1] Jos´e Brustoloni, Nicholas Farnan, Ricardo Villamar´ın-Salom´on and David Kyle,
Efficient Detection of Bots in Subscribers’ Computers, 2009 IEEE 978-1-4244-3435-0/09
[2] B. M. H¨ammerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 109–128,
2007. Measurement and Analysis of Autonomous Spreading Malware in a University
Environment.
[3] André R. A. Grégio1, Isabela L. Oliveira2, Rafael D. C. Santos3, Adriano M.
Cansian2, Paulo L. de Geus1. Malware distributed collection and pre-classification
system using honeypot technology
[4] Michael Bailey1, Jon Oberheide1, Jon Andersen1, Z. Morley Mao1, Farnam
Jahanian1,2, and Jose Nazario2. Automated Classification and Analysis of Internet
Malware.

[5] Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to
understanding the botnet phenomenon. In: IMC ’06: Proceedings of the 6th ACM
SIGCOMM Internet Measurement Conference, pp. 41–52 (2006)
[6] Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: My botnet is bigger than yours
(maybe, better than yours): Why size estimates remain challenging. In: Proceedings of 1st
Workshop on Hot Topics in Understanding Botnets (HotBots ’07) (2007)

[7] Saroiu, S., Gribble, S.D., Levy, H.M.: Measurement and analysis of spyware in a
university environment. In: Proceedings of Networked Systems Design and
Implementation (NSDI’04), San Francisco, California, United States (2004)

[8] Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F.C.: The nepenthes
platform: An efficient approach to collect malware. In: Zamboni, D., Kruegel, C. (eds.)
RAID 2006. LNCS, vol. 4219, pp. 165–184. Springer, Heidelberg (2006)

[9] Nepenthes – Finest Collection. Available at: http://nepenthes.carnivore.it.
[10] http://anubis.iseclab.org/
[11] http://www.joebox.org/
[12] http://www.kaspersky.com/

Appendix I: The table shows a brief description of some randomly selected malwares that show botnet behavior.

Behavior analysis
Malware md5 Source IP date Kaspersky clamav DNS? DNS IP

Country
HTTP IRC server

Opened
listening
ports

b3138b807d340e5e
daf68e732ceb6c13 193.198.84.204

2010-
07-10

Backdoor.Wi
n32.Rbot.sr

Trojan.Age
nt.ND

dns.aswend.com 70.107.249.167 70.107.249.167 21, 80, 113

115.83.108.240
2010-
01-14

moscow-advokat.ru

coins.dal.net 194.14.236.50 194.14.236.50

113, 3067,
7828, 6255 7f60162c2c0bd2cc

7531e51328e98290
115.163.62.37

2010-
05-31

Net-
Worm.Win32.
Padobot.n

Worm.Pado
bot.N

diemen.nl.eu.undernet.org 194.109.20.90
194.109.20.90:666
7

1f8a826b2ae94daa
78f6542ad4ef173b

37 different
sources

2010-
01-14 ~
2010-
08-15

Backdoor.Wi
n32.Rbot.aftu

Trojan.SdB
ot

botz.noretards.com 128.111.73.201 80

ss.ka3ek.com 109.196.130.50
ss.nadnadzzz.info 109.196.130.50
ss.MEMEHEHZ.INFO 109.196.130.50
ss.memehehz.info

109.196.130.50 RU

 109.196.130.50
go.microsoft.com 65.55.57.251 US 65.55.57.251 65.55.57.251
www.ieaddons.com 120.136.35.139 US 120.136.35.139 120.136.35.139
www.microsoft.com 65.55.12.249 US 65.55.12.249 65.55.12.249

14999

worker-24.seclab.tuwien.ac.at 128.130.56.24 AT

1085f60dabfe6df6
3ec98ae3ad2860d0

211.160.112.7
210.240.41.10

2010-
01-16 ~
2010-
02-02

Trojan.Win32
.Buzus.cvzu

Trojan.Buzu
s

ss.nadnadzzz.info 67.43.232.36 CA 67.43.232.36
c4daa264460d246e
88991f0aef4a93e2 121.145.120.165

2010-
06-02

Trojan.Win32
.VB.aizl

unknown http communication without DNS US 65.55.57.251

Trojan.Win32
.Buzus.cvzu

ss.ka3ek.com

 ss.nadnadzzz.info
109.196.130.50 RU

109.196.130.50

0368ff583a3f118a
16a72fd6c53e6508 211.44.197.72

2010-
02-03

Trojan.Buzu
s

worker-24.seclab.tuwien.ac.at 128.130.56.24 AT 16549
proxim.ircgalaxy.pl 83.133.119.206 DE
ss.MEMEHEHZ.INFO 109.196.130.50 RU
ss.nadnadzzz.info
ku.perfectexe.com 222.170.127.203 CN
image.perfectexe.com 222.170.127.203 CN 222.170.127.203:80
kdddaber.com 91.217.162.178 UA 91.217.162.178:80

2aa635dda735bbbb
560b12a10f6a764c 211.44.197.72

2010-
01-31

Virus.Win32.
Virut.n

W32.Virut.d
a

 CN 60.190.222.131:81

