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Abstract. Intrusion plan prediction and recognition is a critical and challenging 
task for NIDS. Among several approaches proposed so far, probability 
inference using causal network seems to be one of the most promising 
mechanisms. Our analysis shows that the polytree is limited in its 
expressiveness, and belief updating in max-k-connected networks is hard for all 

2k ≥ [12]. To find a tradeoff between expressive power and inference 
efficiency, this paper extends the structure of causal network from polytree to 
max-1-connected Bayesian network, and proposes a new intrusion plan 
prediction algorithm IPR on it. We evaluate the approach using LLOS1.0, and 
the results demonstrate that IPR can predict the occurrence probability of 
DDOS when Sandmind attack occurs to gain root privilege, and then confirm 
the prediction in the beginning of Syn flooding.  
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1 Introduction 

The wide spread of use of NIDS and the increasing complain about its high volume 
alerts have led to more and more intensive exploratory works on it. People begin to 
realize that the high false positive ratio is due to short of understanding of inner 
logical relations in the attack flows. So it is not reasonable to detect intrusion only 
based on single-packet signature and to view the attack flow separately. Among the 
recent researches focusing on how to accumulate the alert logical relations from the 
context [1], inference using causal network is one of the most promising approach for 
its powerful expression of causality and belief propagation consistent with ongoing 
evidence. [2] designed a two-level Bayesian tree model to discover novel attack 
strategies by correlating alerts. The expensive cost of this method leads to its poor 
behavior on practice. [3] proposed an abnormal IDS called eBayes TCP to detect 
some TCP abnormal behaviors, but the false positive ratio is also high. Comparatively 
more mature work was done by [4]. [4] proposed an abuse detecting approach based 
on polytree. Relying on the library of attack plans (defined as polytree), belief 
updating algorithm is used to calculate the new belief of each node when a new 
evidence entered, and then the node with the highest score is considered as the most 
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possibly occurring attack. But the causal network used in [4] is a polytree, as shown 
in the sequel its expressive power is too limited in illustrating attack plan. 

A Bayesian Network (BN) G=(V, P) is represented as a directed acyclic graph G 
where V is a set of nodes, and each one of V stands for a variable. P is a set of edges 
and each one of P denotes a causal relationship between a couple of variables. A 
polytree topology is defined as BN where for every pair of nodes (x1, x2), there is at 
most one path from x1 to x2 in the underlying undirected graph[6]. When defining the 
attack tree, security analysts decompose the final goals into subgoals iteratively until 
those of the lowest level are exercisable penetration points. In the above process, a 
causal network is expanded and its branches are built to identify the different 
subgoals. So it is common that x1 and x2 have two same children. Unfortunately in 
this case the path between them will be two (as shown in Fig.1). In order to escape the 
limitation of polytree in expression, there are naturally two ways to try. One is to 
remove nodes to make it polytree-structured by conditioning algorithms[5,6] or 
cluster schemes[7,8]. However, all these reductions are usually exponential in some 
aspect of the problem instance and not efficient. Another way is to increase the 
number of paths between pairs of nodes and broad the known classes of tractable 
Bayesian networks. [9] proved that Belief updating in max-k-connected networks is 
hard for all 2k ≥ , even with no evidence. This paper puts forward max-1-connected 
Baysian Network(M1CBN) as the tradeoff in balancing its expressive power and 
inference efficiency. Unlike Polytree, M1CBN is defined as networks where for each 
couple of nodes (x1, x2) in DAG, there is at most one directed path form x1 to x2. The 
difference between them is illustrated in Fig.1. Clearly, all polytrees are M1CBN, but 
not vice versa. Based on M1CBN, an intrusion plan recognition algorithm (IPR) is 
introduced which not only benefits more powerful expressive power, but also retains 
polynomial performance. In practice many attack graphs are expressed by multiple 
connected BN, and it is more efficient to transform them to M1CBN and apply IPR 
directly than to transform them to polytree and apply Pearl’s algorithm as [4]. 
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Fig. 1.          Max_1_connected BN                                                 Polytree 

Intuitionally the task of plan recognition is to find an explanation for the observed 
evidence e. The explanation is usually composed of a set of hypotheses, and what 
these hypotheses are and the values of them are particularly concerned. In a BN 
G=(V, P)  E denotes nodes that have been trigged by evidence e, and W=V-E denotes 
all variables without evidence. Any assignment of W that is consistent to e is called 
an explanation of e. The task of recognition is to find an assignment that makes  
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and it is called the most possible explanation (MPE). Usually people tend to ignore 
attack details and focus only on key steps and the final goal(that is, to focus on some 
specific variables of W). When the assignment w is a partial one the task of (1) 
becomes a MAP problem (to find a most probable instantiation of a set of variables 
given evidence). Generally the MPE and MAP problem over Bayesian Network are 
NP hard，but in some known tractable subclasses such as polytree, polynomial 
algorithms have been found for MPE problem, whereas MAP remains hard.  

The rest of the paper is organized as follows. Section 2 shows some important 
results in inference in M1CBN. Based on section 2, respectively a new approximate 
belief updating algorithm BeliefUpdating and intrusion plan recognition algorithm 
IPR are addressed in section 3 and 4. Section 5 applies IPR in LLDOS1.0, a data set 
of DARPA 2000, and reports our experiment results. Finally, we conclude the paper 
and discuss future research directions on this topic in section 6. 

2 Intrusion Plan recognition on M1CBN 

For the sake of convenience, we introduce some notations. Given a M1CBN B and 
any node X in B, we denote by ( )X∏ the parents of node X，by ( ( ))D X∏ the set of 
all possible assignment on ( )X∏ , and by *( )X∏  the set of all the ancestors of X, 
including X (* is reflexive and transitive closure to∏ ). The ancestor graph G*(X) of a 
node X, induced by X, is composed of all the nodes in *( )X∏  and the arcs 
connecting them in B.  

Proposition 1 MPE/MAP when restricted to M1CBN is NP-hard, even with no 
evidence. 

Sketch of Proof. Clearly a 2_level BN is a M1CBN, as is shown in Fig.1(a). [10] 
proved MPE/MAP restricted to 2_level BN with evidence is NP hard, and MPE/MAP 
on 2_level BN without evidence remains NP hard [11]. And then MPE/MAP on 2-
level M1CBN is NP hard. Therefore, MPE/MAP restricted to m-level (m≥2) M1CBN 
is NP hard as well.  

Proposition 2 Belief updating in M1CBN is NP-hard. 
This conclusion directly follows from the above proof. 
Theorem 1 Top-down belief updating in M1CBN without evidence can be 

performed in time linear in the size of the network. 
Proof. Given a BN without evidence, the marginal probability in any node 

,i i jX x=  is: 
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In a max-1-conneted BN, any predecessor of X is d-separated, and thus equation 

(2) can be evaluated as Equation (3): 
Equation (3) just formalizes the case of passing justπ messages in polytree without 

evidence. So top-down belief updating in M1CBN without evidence can be performed 
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in time linear in the size of the network. 
Theorem 2 G*(X) forms an X-oriented polytree for every X V∈ . 
Proof. The proof of the proposition is constructive. According to the definition of 

ancestor graph, given node X, there is one and only one path from X to its parent Y. 
Likewise, there is an exclusive path from Y to its parent Z. So the exclusive path 
between X and Z is fixed. Iteratively following this way, we can get an exclusive path 
between X and any of its ancestors. Hence, G*(X) forms an X-oriented polytree. 

Proposition 1 shows MAP is hard in M1CBN. Belief updating is a practically 
useful inference algorithm for approximating MAP for a number of reasons and has 
proven to be very effective and efficient in a variety of domains. Unfortunately, even 
belief updating is hard in M1CBN (shown in proposition 2). Based on theorem 1 and 
2, a new belief updating algorithm restricted to M1CBN is described in the next 
section. 

3 Belief Updating Algorithm in M1CBN 

Based on the above discussion, local belief updating in M1CBN can be accomplished 
in two steps. Step 1 Bottom-up propagation: all nodes that have direct causal relations 
with X compose the ancestor tree of X. And as is proved in theorem 2, the ancestor 
tree is a polytree. So when a new evidence e triggers node X, belief propagation in 
G*(X) is the same as that in polytree [6]. Setp 2 Top-down propagation: the belief 
changes of nodes Y in step 1 will affect the likelihood of their children as effect. This 
step updates the believes of Y’s offspring using equation (3) while breadth first 
searching M1CBN. One note worth to mention is that belief updating in M1CBN 
propagates only twice and does not adopt iterative updating mechanism used by 
polytree, since most of causal influence can be evaluated in two propagations. 
Moreover, the simplified algorithm directly leads to polynomial performance. In 
algorithm BeliefUpdating N is a node in M1CBN, and each N has an evaluator JN, 
which is responsible for evaluating the condition matching. To measure uncertain 
information, JN∈ [50%,100%]. All messages are initialized to 1. 
 

Algorithm BeliefUpdating(B, eventi) 
Input: M1CBN B(V, E), hyper alert eventi 
Output: updated believes in B, denoted as a vector 
UpdatedBelief(aim: likelihood, 
key_attack_step1:likelihood, … , 
key_attack_stepi:likelihood, 
key_attack_stepn:likelihood) 
{ 
If (node X is triggered by eventi) then { 
sign X as an observed node, and JX = current belief 
of X,  
// Bottom-up propagation 
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Breadth-first search G*(X) starting from X, for all 
node Y∈G*(X) do { 
//updating with Pearl’s formulation[6]  
receive π Y(Ui) from every Y’s parent node Ui; 

receive λ Ci
(Y) from every Y’s child node Ci; 

    compute Belief(Y) and sign Y; 
    compute λ Y (Ui) for every Y’s parent node Ui; 
    compute π Ci

(Y) for every Y’s child Ci;  
} 
// Top-down propagation 
Breadth-first search B, for any node N do  
If (the parent of N has been signed) then {  

update the believes of N with equation (3); 
sign N; 

} 
For i=1 to the number of key attack nodes of B do{  
UpdatedBelief [i]. key_attack_step= B[i].node; 
UpdatedBelief [i].likelihood = B[i]. belief; 

} 
Output UpdatedBelief; 

} 
} 

4 Intrusion Plan Recognition algorithm IPR 

For raw alerts generated by NIDS, we aggregate and cluster them based on different 
srcIP or dstIP, and then prioritize them as [14]. The redundancy of resulting alerts is 
reduced, while important alert attributes retains. We denote each attack flow in the 
same cluster by a time series-based event vector Event(event1, event2, … eventi , … , 
eventn), and each eventi is called a hyper alert.  

The complexity of IPR heavily relies on BeliefUpdating. BeliefUpdating 
propagates the diagnostic influence of ongoing evidence in its ancestor tree and thus 
reduces the problem’s difficulty. In other wards, it tries to propagate causal influence 
as wide as possible. We denote by X the evidence node, by n the number of nodes in 
BN, and by m the average number of nodes in G*(X). As shown in [13], 
generally nm ≺≺ . If we measure the complexity of BeliefUpdating by the nodes it 
visits, then the complexity of Bottom-up propagation is O(m), and Top-down 
propagation is O(n). So the complexity of BeliefUpdating is O(m+n). Suppose the 
average number of matching Bayesian Network is k, the complexity of IPR is 
O(k(m+n)), which is polynomial in the size of attack graph. 

 
 
Algorithm IPR(Event)  
Input: Event(event1, event2, … , eventi …) 

Output: the aim of attack with the probability and 
corresponding parameters, such as srcIP and dstIP. 
{ 
i=1; 
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While (eventi is not NULL){ 
Search attack plan library, and trigger BNs that 
include eventi; 
j = the number of triggered BN; 
for k=0 to j do{ 
newBelief[k] ← call(BeliefUpdating(BNk, eventi)); 
If (newBelief[k].aim > threshold) then { 

output newBelief[k]; 
output corresponding parameters, such as srcIP, 
dstIP, port and time; 
predict newBelief[k].aim as the aim of attack; 

}  
} 
i++; 

}  
} 

5 Experiment  

To evaluate the effectiveness of approximation made by these two algorithms, we 
applies them to LLDOS1.0, the first DDOS attack scenario created for DARPA to 
evaluate IDS. IPR is implemented on Monster3.0, a GNIDS developed by Southeast 
University. LLDOS1.0 includes 5 attack phases over the course of which the 
adversary probes, breaks in, installs trojan mstream DDoS software, and launches a 
DDoS attack against an off site server. Fig.2 illustrates the DDOS attack graph stored 
in Monster3.0, where the key parameters, such as CPT and prior probabilities, are 
listed on arcs and nodes respectively. Table 1 shows the hyper alerts of the attack 
flow in 172.16.115.0/24 after aggregating, clustering and eliminating redundancy, 
while the same alerts of other three subnets (172.16.112.0/24~ 172.16.114.0/24) are 
omitted for its clarity. In fact the alerts are far more than that listed in the table 1, for 
example, the hyper alert ICMP_PING_SWEEP represents 256 raw alerts. A denotes 
the aim DDOS, and B, C denote the other two key attack steps, Controlling a group of 
hosts and Launching attack respectively. In this case, Fig.2 and the alerts in column 2 
are the input of algorithm IPR and the likelihood value of A, B and C are listed in 
each row as the output. The belief of the trigged node which is computed by its 
evaluator J, is listed in column 3. And the source IPs are 202.77.162.213, except for 
those that are spoofed and randomly generated by Syn flooding.  

 
Table 1.  The experiment results 
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A clear attack track is shown in table 1 and believes of A, B and C increase stably 

in the course of attack. In the beginning, ICMP_PING_SWEEP comes, and the 
evaluators of node P and Q activate them with a probability of 100% (the adversary 
probes the subnet). The values of A, B and C suggests that ICMP_PING_SWEEP 
doesn’t contributes much to DDOS, though the belief of A rises from 30% to 32.5%. 
Secondly, RPC_portmap_sadmind_request_UDP and RPC_sadmind_UDP_PING are 
probe steps to determine which hosts are running the remote administration tool, 
"sadmind". At this time, 172.16.115.20 is founded to be vulnerable. During the 
previous process, JN gradually increase its belief from 80% to 100%, and A increases 
from 42.8% to 44.8% accordingly. In the third step, the adversary uses sadmind, 
buffer-overflow attack, to remotely break in 172.16.115.20, and three different stack 
pointer values are attempted, generating alerts RPC_portmap_sadmind_request_UDP, 
RPC_sadmind_query_with_root_credentials_attempt_UDP, and RPC_sadmind_ 
UDP_NETMGT_PROC_SERVICE_CLIENT_DOMAIN_overflow_assttempt. When 
172.16.115.20 responses the adversary by listing the directory (172.16.115.20 is sure 
to be conquered), JE = 100% and A and B climb rapidly and reach 62.8%, 73.2% 
respectively. As soon as the real Syn flooding is launched, A soars to 80.4%, which is 
greater than threshold (70%), and then IPR outputs the attack vector as ((A, 80.4%), 
(B, 100%), (C, 80.9%)). From the circumstance variables, such as 
srcIp(172.16.115.20) and DstIp(131.84.1.31), one can conclude that the source IP of 
DDOS are not the forged ones appeared in the packets, but 172.16.115.20, which is 
remotely controlled by the adversary. In LLDOS1.0, 172.16.112.20 and 
172.16.112.10 was conquered in the same way. So we can cut down the 
communication of these three hosts and prevent DDOS from happening. 

6 Conclusion 

This paper proposes an algorithm IPR with polynomial complexity O(k(m+n)) to 
predict and recognize attack plan, which exceeds [4] in expressive power and 
performance. The main improve relies on the following: 1) IPR broads the structure 
of attack plan depicted by Bayesian Network from polytree to max-1-connected 
Baysian Network, and thus expressive power becomes rich. 2) IPR gives up the 
iterative updating mechanism used by polytree, and adopts approximation to 

Dst IP Hyper alert Value of 
Evaluator A(%) B(%) C(%) 

172.16.115.0/24 ICMP_PING_SWEEP JQ = 1 
Jp = 1 

32.5 
41.8 

50 
40.4 

32 
42.6 

172.16.115.0/24 RPC sadmind UDP PING JN = 0.8 42.8 59.5 43 
172.16.115.20 RPC portmap sadmind request UDP JN = 1 44.8 65.3 46 

172.16.115.20 RPC sadmind query with root credentials 
attempt UDP JN = 1 44.8 65.3 46 

172.16.115.20 
RPC_sadmind_UDP_NETMGT_ 
PROC_SERVICE_CLIENT_DOMAIN 
overflow attempt 

JN = 1 44.8 65.3 46 

172.16.115.20 ATTACK-RESPONSES directory listing JE = 1 62.8 73.2 59.2 
172.16.115.20 RSERVICES rsh root JB = 1 68.9 100 63.4 
131.84.1.31 Syn flooding JF = 1 80.4 100 80.9 
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propagate causal influence as wide as possible. The approximation leads to 
polynomial performance and is effective as the experience shown. Moreover, IPR 
bears several advantages: firstly, it is able to detect multiple concurrent goals and 
partially ordered plan; Secondly, it has default reasoning ability and can deal with 
uncertain information. However, as a method based on predefined attack graph, it can 
not recognize unknown attacks. So how to recognize the new attack by correlation is a 
challenge in our future work. 
 

 
 

Fig. 2.  Attack graph of  DDOS 
 

Acknowledgments. This research is partially support by the National Basic Research 
Program (973 Program) No.2003CB314803, Jiangsu Province Key Laboratory of 
Network and Information Security BM2003201 and the Key Project of Chinese 
Ministry of Education under Grant No.105084. 
 
References 

 
For the sake of the space, references will be available whenever you ask the authors.   


