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Abstract—Overlay networks have emerged as a powerful
and flexible platform for developing new disruptive network
applications. The attractive characteristics of overlay networks
such as planetary-scale distributions, user-level flexibility (e.g.
overlay routing) and manageability bring to overlay fault di-
agnosis new challenges, which include inaccessible underlying
network information, incomplete and inaccurate network status
observations; dynamic symptom-fault causality relationships, and
multi-layer complexity. To address these challenges, we propose a
distributed user-level Belief Revision based overlay fault diagnosis
technique called EUDiag. EUDiag can passively use observed
overlay symptoms as reported by overlay monitoring agents
to correlate and diagnose faults, and select the least-costly
appropriate probing actions whenever necessary to enhance the
passive fault reasoning results. EUDiag adapts to the changes
in highly dynamic overlay networks by incrementally revising
user beliefs based on new observed overlay symptoms. EUDiag
can diagnose faults without relying on underlying network
fault probabilistic quantifications (e.g. prior fault probability).
Simulations and experimental studies show that EUDiag can
efficiently (e.g. low latency) and accurately localize root causes of
overlay faults/problems, even when the observed symptoms are
incomplete.

I. INTRODUCTION

Overlay service model [1] has been widely adopted by

research community [3][6][22] as well as commercial Overlay

Service Providers (OSPs) [2][5] as an effective approach

to implement disruptive planetary-scale network applications.

However, overlay applications are prone to variety of faults

across multiple layers such as fiber cuts, router misconfig-

urations, or overlay node outages. These faults usually can

be observed as certain end-to-end network disorders [4][29]

(e.g. packet loss or abnormal latency) and manifested as

trouble tickets or monitoring alerts. The performance and

reliability of overlay applications depend on the capability of

overlay networks to quickly and accurately detect and diagnose

faults so as to dynamically adjust their topologies [8]. How-

ever, traditional fault management techniques [14][17][18] and

proprietarily developed overlay fault detection and diagnosis

approaches [8][12][26][29] can not satisfy new requirements

and tackle new challenges in dynamic overlay networks.

A. New Challenges in Overlay Fault Diagnosis

We believe the following new characteristics and challenges

decide overlay fault diagnosis has to adopt a new approach,

which is the focus of this work:

• Inaccessible underlying network information and incom-
plete network status observation: In overlay network

domain, overlay services are provisioned, operated by

OSPs on the top of opaque underlying networks. Overlay

fault diagnosis technique must be developed based on

incomplete and insufficient user-level observations.

• Planetary-scale and widely distributed service infrastruc-
ture: Overlay services usually run across multiple ISPs

and are widely distributed [2][3]. Multiple overlay appli-

cations (e.g. Yahoo, Amazon) may co-exist on top of the

common overlay network infrastructure (e.g. Akamai).

• Multi-layer complexity and dynamic symptom-fault
causality: In overlay networks, observed symptoms are

usually not designed for monitoring specific faults (e.g.

malfunctioning router interface). Symptom-fault causality

relationship is dynamic and unpredictable in overlay

networks.

• Fault reasoning goal and granularity: In overlay network,

it becomes more interesting for overlay applications to

effectively bypass detected faulty components instead of

fixing them, which is very likely impossible (e.g. for

components owned by ISPs). Thus, for overlay fault rea-

soning, coarse-grained fault reasoning result is acceptable

and may be more preferable in order to improve fault

diagnosis and recovery efficiency.

Considering the above challenges, we argue that in

planetary-scale multi-layer overlay networks, overlay fault

diagnosis should aim at the following objectives. They should:

• be able to isolate multiple simultaneous faults as well
as faults on multiple layers. This feature improves the

technique’s applicability to planetary-scale systems; and

provides critical information for taking appropriate over-

lay fault recovery strategies.

• be flexible to diagnosis granularity. Overlay applications

are service-oriented. The goal of overlay fault diagnosis

is to help overlay applications bypass faulty components

(e.g. routers in ISPs). Thus, coarse-grained diagnosis

is more preferable by considering the effectiveness and

performance of overlay fault diagnosis.

• be resilient to incomplete and spurious symptoms. Over-
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lay fault diagnosis technique should be robust and effec-

tive in handling incomplete or even spurious symptoms.

• be distributed and collaborative. Scalability and wide

distribution of overlay applications [2] decide that over-

lay fault diagnosis has to adopt a distributed approach

collaboratively to improve the diagnosis performance,

minimize network intrusiveness and tackle observation

incompleteness.

• be adaptive to new observations. Previous diagnosis

result should be incrementally revisable by considering

new evidence/symptoms.

• be efficient and reasonably accurate. Overlay fault diag-

nosis accuracy should be considered as a trade-off be-

tween response time and overlay recovery effectiveness.

• be passive and active integrated. If passive diagnosis

results are not sufficient and satisfactory in terms of their

credibility, a set of optimally selected probing actions

should be selected to actively discover more fault indica-

tions to facilitate overlay fault diagnosis process.

B. Our Contributions

This paper investigated an interesting and timely problem:

overlay fault diagnosis, from user perspective without relying

on any probability fault diagnosis model. The paper makes the

following contributions to the field of overlay fault diagnosis.

• It advances the state-of-the-art in overlay fault diagnosis

by providing a novel user-level overlay fault reasoning

framework. To the best of our knowledge, this is the first

comprehensive user-level distributed and collaborative

overlay fault diagnosis framework.

• It proposes a novel concept Belief Revision to flexibly

correlate dynamic overlay symptom-fault causality, which

can also be incrementally revised when new symptoms

observed.

• It seamlessly incorporates active actions into passive fault

reasoning process to achieve better diagnosis performance

and accuracy.

• It provides an unified framework with incremental Belief
Revision capability for OSPs collaboratively sharing mon-

itoring information. The experiments also show Collabo-
ration Gain for OSPs by sharing network observations.

The paper is organized as the following. In Section II,

we formalize the problems and overview EUDiag system.

In Section III, we introduce the concept of Belief Revision
and elaborate technique details of EUDiag. In Section IV, we

present our simulation studies and real experiment results to

evaluate EUDiag performance and accuracy. In Section VI,

related work is discussed. Section VII gives our conclusions

and future work.

II. SYSTEM OVERVIEW AND PROBLEM

FORMALIZATION

The aim of this work is to provide a general and practical

fault diagnosis framework for overlay users, developers and

operators (e.g. Planet-lab [3], Akamai [2]) to collaboratively

monitor and analyze overlay network status and identify faults

(e.g. the overlay or underlay component which caused packet

loss) that degrade the application performance. Overlay service

model aims at providing planetary-scale services on the top of

wide area underlying network infrastructure (e.g. the Internet).

TABLE I
OVERLAY NETWORK DISTRIBUTION

Overlay Service Providers
Planet-Lab Akamai

Nodes ∼800 ∼25,000
Networks ∼400 ∼1,000
Countries ∼30 ∼70
Applications CoDeeN, CoralCDN Yahoo, Facebook

As shown in TABLE I, OSPs usually provide planetary-

scale network infrastructure and host multiple long-running

overlay applications. However, among OSPs and even among

applications hosted by the same OSP, they usually do not share

monitoring information and use their own monitoring systems,

which may still rely on centralized monitoring mechanism

(e.g. [4]) to aggregate widely distributed and less likely rele-

vant events. As shown in [13], the stability of edge network is

less than backbone network. Thus, proximal users’ observation

(based on geographical or network distribution) are more likely

relevant. Thus, to tackle the above inefficiency, we propose

a new overlay diagnosis framework called EUDiag, which

adopts a distributed and collaborative approach such that it

can (1) effectively deal with observation incompleteness by

collaboratively sharing information; (2) efficiently aggregate

relevant events/observations in a distributed fashion.

In EUDiag framework, there are a set of Overlay Ser-

vice Providers as O = {OSP1, OSP2, · · · , OSPN}. For

each OSPi, it hosts a set of overlay applications APPi =
{appi1, appi2, · · · , appiM}. For each overlay application

appij hosted by OSPi, it may generate a set of symptoms

Sij = {sij1, sij2, · · · , sijQ}. We assume all OSPs collab-

oratively host a monitoring infrastructure that consists of a

set of well-distributed overlay monitoring agents (mk) M =
{m1,m2, · · · ,mK}. Accordingly, each application appij may

also designate K application monitoring agents (denoted as

appAgentsk
ij). Here, 1 ≤ i ≤ N, 1 ≤ j ≤ M, 1 ≤ k ≤

K;K, M, N ≥ 1. Overlay application nodes should report

observed symptoms to their proximate appAgentsk
ij , which

further aggregated to mk. There are many techniques proposed

for finding proximate agents such as the one discussed in [10].

In this manner, the symptoms from same application appij are

partitioned into Sij = s1
ij ∪ s2

ij · · · ∪ sK
ij .

For each distributed overlay monitoring agent mk, the pro-

cesss of overlay fault diagnosis is to find credible hypothesis

(Hk), which can best explain all received symptoms {sk
ij}. In

order to make the following discussion easier and clearer, we

first define a few important concepts and their notations in

overlay network context.

Definition 1: Overlay Network Component Set (C): C con-

sists of Overlay Component Set Co and Underlay Component
Set Cu (C = Cu ∪Cu). In EUDiag framework, each object c
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(c ∈ C) is assigned an unique ID as the following: if c ∈ Co)

(e.g. overlay node), c has a 1-byte prefix equal to ”1”; if

c ∈ Cu (e.g. network router), c has a 1-byte prefix equal to ”0”.

The suffix of each object is a 128-bit output from hash function

(e.g. MD5) H(getASN(c), getNetID(c)). Here, getASN and

getNetID are two utility functions to obtain AS number (ASN)

and corresponding network ID (NetID) of a given component

c. In order to avoid ambiguity of Variable Length Subnet

Masking (VLSM) adopted in CIDR notation, and considering

the coarse-granular overlay fault diagnosis feature, we simply

use original classful network ID as NetID of a given compo-

nent. We believe the granularity given by NetID is sufficient

for overlay applications to take necessary countermeasures.

Thus, in EUDiag framework, each component is assigned a

136-bit unique component ID.

This reduction can significantly improve the efficiency of

fault diagnosis in EUDiag without losing necessary gran-

ularity. Each logic component (ci) may consist of multiple

physical hops, which may have different overall prior fault

effect. We define a parameter called Component Weight (Wci
),

a number of physical hops contained in ci, to describe such

characteristic. For overlay nodes existing on end-user networks

(EUN), their weights are all set to 1.

EUDiag does not assume knowing or be able to discover

complete network members (e.g. underlying routers in ASes).

For the unidentifiable network portion (e.g. routers don’t

response to traceroute ), we compute hash function on the

following 4-tuple: the ASN and NetID of the hops before and

after the unidentifiable network portion.

Definition 2: Overlay Symptoms (S): Network symptoms

can be classified into various categories and represented differ-

ently. In EUDiag, Overlay Symptoms are defined as end-to-end

observations of network disorders (e.g. reachability outage or

high packet loss ratio, abnormal latency) on overlay links. For

simplicity without losing generality, we assume the category

of all overlay symptoms are same (e.g. packet loss). Thus, each

overlay symptom (s) can be simply represented by a sequence

of overlay network components.

The symptoms could be positive or negative. Negative

symptoms (also denoted as SN ), si, (si ∈ S), indicate certain

network disorder that involves at least two of the identifiable

components (overlay or underlay). Negative symptoms can be

generated as a result of application notification or monitoring

probing. However, positive symptoms (also denoted as SP )

so
i , which could be inferred only as a result of infrastructure

monitoring probings, indicate healthy status for all identifiable

components in the diagnosed path.

Definition 3: Overlay Faults (F ): F is a set of faulty

components. If the corresponding faulty components are over-

lay components, we call them overlay faults denoted as

F o. Similarly, if the corresponding components are underlay

components, we call them underlay faults denoted as Fu.

F = F o ∪ Fu. Distinguishing faults between overlay and

underlay components has significant impact on overlay fault

recovery. Generally, if the fault is caused by F o, an overlay

application may easily choose a backup overlay node from the

same site. On the other hand, if the fault is caused by Fu, then

an overlay application need find another overlay node [8] to

bypass the faulty underlay components.

III. OVERLAY FAULT DIAGNOSIS USING BELIEF

REVISION

A. User Beliefs

Overlay fault diagnosis has to be conducted from user-level.

Many intelligent tools/utilities were proposed for end users to

generate more informative symptoms [32][31][27]. However,

how to systematically combine/integrate User Beliefs to find

best explanation for observed symptoms is an unresolved

issue.

Belief Function can be defined specifically based on the

given problem domain. To make it more applicable, EUDiag is

designed based on four most common but critical User Beliefs
in overlay fault diagnosis domain. In the following, we first

discuss these four User Beliefs (knowledge), then introduce a

novel mechanism to compute User Belief value:

• Belief-1: Generally, overlay component has higher prior

fault probability than underlay component [4][13]. Thus

we have p(1ci) � p(0cj). Here, 1ci and 0cj represent

any overlay and underlay component respectively. For

instance, the prior fault probability of network router can

be safely estimated less than 10−4. However, the prior

fault probability of overlay node can be commonly greater

than 10−2 [4]. Thus, we prefer using overlay components

to explain observed overlay symptoms.

• Belief-2: The probability of simultaneous underlay faults

is low [14][17]. The underlying faults for a logic underlay

component ci may contain multiple physical components.

Thus, the prior fault probability of a logic underlay

component ci increases with the more contained physical

components (p(ci) = 1−(1−p)N . p is estimated average

prior fault probability of each physical component). Thus,

we prefer using least weight components to explain

maximum number of symptoms.

• Belief-3: The probability of multiple appAgents generate

false alarms simultaneously is low [17][16]. Thus, the

same component the more symptoms associated with or a

hypothesis (a set of components which explains observed

symptoms), the more likely the component is faulty or the

hypothesis is true.

• Belief-4: If negative overlay symptom is received, we

believe at least one component (either overlay or un-

derlay component) is faulty; if positive symptom re-

ceived, we believe all relevant components are in good

status [14][16].

User-level overlay fault diagnosis is a process of reasoning

root causes that best explain observed overlay symptoms by

combining user beliefs. We show in the following example

(as shown in Fig. 1) that the above four User Beliefs can

cover all different user observations and provide fundamental

support for user-level fault reasoning. In an extreme scenario,

when overlay monitoring agent mk only received one overlay
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Fig. 1. User Belief Based Overlay Fault Diagnosis

symptom (e.g. s4 in Fig. 1), we still can make reasonable

fault inference that at lease one of the components (e.g.

1c6, 0c8, 1c7) is faulty based on Belief-4. Thus, we have the

following hypotheses: h1 = {1c6}; h2 = {0c8}; h3 = {1c7};

h4 = {1c6, 0c7}; . . .; h7 = {1c6, 0c8, 1c7}. According to

Belief-2, we believe h1, h2, h3 are more likely to happen.

Further, according to Belief-1, we want to conclude that h1

or h3 should be considered first. If we have the knowledge on

prior fault probabilities (p(1c6 and p(1c7)) of overlay nodes

1c6 and 1c7, then one of the candidates with higher prior fault

probability should be investigated first. In another example, if

the monitoring agent mk received both s2 and s3, according to

Belief-2, we make a hypothesis h = {0c3, 1c4}. Then we need

combining Belief-1 and Belief-2 to choose between 0c3 and

1c4. The challenge here is how to automate such intelligent

analysis process by properly combining all user beliefs with

appropriate and adjustable belief weights, which decide the

effect of different beliefs in final decision.

B. Incremental Belief Revision

We propose a novel user-level Belief Function (BF) (as

shown in Eq.1) that seamlessly integrates and quantify all

above User Beliefs with the consideration of weight adjustabil-

ity and belief incremental revision capability. Different overlay

fault diagnosis system can adjust several system parameters

to optimize the belief weights and improve the credibility of

Belief Revision function. In Fault Reasoning module, we use

the Belief Function (BF ) as a criteria to find faulty component

that have maximal indications explaining observed overlay

symptoms.

BF (ci) = [1−
∏

a∈ASci

p(a)]×[γ|Sci
|+(1+PF (ci)×K)W (ci)]

(1)

The Belief Function BF (ci) is elaborated as the following:

• Sci
is the set of observed overlay symptoms that contain

the same component ci. |Sci
|, the size of such symptom

set, shows the strength of observed indications regarding

if the component ci could be faulty. For example, in Fig.1,

if we received all symptoms, then |S0c4 | = 2;

• ASci
is the set of different application monitoring agents

(appAgentkij) reporting the symptoms contained in Sci
;

• p(a) is the probability that a monitoring agent

(appAgentkij) sends false alarms or spurious symptoms,

which can be observed based the corresponding agent’s

historic records. For example, the ratio of the total

number of reported false alarms over the total number

of reported symptoms. Initially p(a) is set to 0, which

means the system initially trusts all monitoring agents.

Thus, (1−∏
a∈ASci

p(a)) shows that the probability that

at least one monitoring agent in ASci
reports the true

observations;

• W (ci) is the weight of component ci, the number of

individual network hops/routers in this component. The

higher the value of W (ci) is, the more chance that ci

may become faulty by considering [1 − (1 − p)W (ci)]
as the probability of one physical machines contained in

ci faulty (p is the prior fault probability of a physical

machine which we don’t need to know).

• PF is an utility function to get the prefix of the component

ci to distinguish overlay and underlay components.

• K (K ≥ 1) is the overlay weight parameter used to reflect

the fact that the average overlay component prior fault

probability is much higher than underlay component’s.

However, K should be adjusted to reflect the real system.

K can be estimated by performance metrics (e.g. average

upTime, average packet drop ratio);

• γ (γ > 0) is a system parameter to adjust the effect (belief

weight) of estimated prior knowledge (K and W (ci)) and

posterior observations (Sci
).

Before performing Belief Revision calculation, the pre-

processing should be conducted to remove all components

contained by SP from the component set covered by SN . This

pre-processing could effectively reduce irrelevant components

from investigated component set.

Incremental Belief Revision with New Evidence: Since

individual monitoring agent may continuously receive new

symptoms, and collaboration among monitoring agents may

also need correlate distributed User Beliefs, it is important

that Belief Revision can be incrementally conducted based on

previous User Belief result and new evidence. Here we do

not consider temporal correlations among observed symptoms

and assume Belief Revision are conducted within valid obser-

vation time window. We mark the consideration of integrating

temporal factor into Belief Revision as our future work.

Let Tn =
∏

a∈ASci

p(a) and S′
ci

= {s′}∩Sci (s′ is the new

observed symptom), we have the following incremental Belief
Revision formula as shown in Eq.2. By using the previous User
Belief result BFn and Tn, as well as the spurious symptom

rate of the appAgent that reported the new symptom, we

can efficiently revise the previous User Belief to produce a

new revised User Belief BFn+1. This is a critical feature in

achieving incremental local Belief Revision and global belief
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aggregation and revision capabilities.

BFn+1(ci|S′
ci

) = (1 + p(as′) + p(as′ )−Tn

1−Tn
)BFn(ci|Sci

)
+ (1 + γ)Tn + (γTn − 1)p(as′)

� (1 + 2p(as′))BFn(ci|Sci)
+ (1 + γ)Tn + (γTn − 1)p(as′)

(2)

C. Distributed & Collaborative Overlay Fault Reasoning

Once having User Belief on each candidate component, we

need properly define a Belief Threshold BTH to evaluate the

obtained User Beliefs. BTH is model-dependent and should

be considered as a trade-off among fault detection rate, false

alarm rate and detection time. For all components (ci) with

BF (ci) > BTH , we can dynamically create the following

Overlay Reasoning Belief Graph (ORBG):

• For every selected overlay or underlay components with

enough User Belief (e.g. BF (ci) > BTH ), associate a

vertex ci;

• For every overlay symptom containing at least one com-

ponent with enough User Belief, associate a vertex sj

• For every selected component ci and its related symp-

toms, associate an edge eij with weight equal to BF (ci);
Given ORRG, the task of fault reasoning is to find a min-

imal set of components (the hypotheses) that can explain all

observed symptoms. This a typical Set-covering problem that

has been proven a NP-hard problem. We use a greedy search

approximation algorithm to fine one, or multiple hypotheses in

the case all hypotheses having same User Belief value. Among

multiple hypotheses, we choose the one with maximum value

of
∑

ci∈h BF (ci)/|h|.
D. Credibility Evaluation of Fault Hypotheses

The fault hypotheses created by Overlay Fault Reasoning

module may not accurately determine the root faults because

of incomplete symptom observation. Credibility Evaluation
is to measure the hypothesis credibility created in Fault
Reasoning phase. How to objectively evaluate the reasoning

result is crucial and also challenging. We developed a

Credibility Function CF (h) to measure the credibility of

hypothesis h that used to explain observed symptom S.

CF (h) =

∑
ci∈h BF (ci)∑

si∈S(2K +
∑

ci∈Csi
W (ci))

(3)

CF (h) is essentially the likelihood measurement of the

hypothesis (h) by averaging total User Beliefs over all com-

ponents contained in observed symptoms S. Here, K is the

overlay weight factor, and each overlay symptom involves two

overlay nodes. Since the maximal credibility value can not be

obtained because of the incompleteness property of ORBG,

intuitively, the more relevant symptoms observed and less

relevant components involved, the higher credibility can be

achieved. We develop a credibility algorithm taking into con-

sideration a target Credibility Threshold, Cthreshold, that the

user can configure to accept hypothesis. The initial observation

is usually not sufficient. Active actions have to be conducted

to enhance or reduce the belief on the proposed hypothesis.

If the threshold is set too high, even correct hypothesis will

be ignored; but if the threshold is too low, then less credible

hypothesis might be selected. Overlay network administrators

can define the threshold based on long-term observation and

previous experience (e.g. detection rate and false alarm ratio).

E. Action Selection Heuristic Algorithm

We take active actions whenever initial symptom observa-

tion is not sufficient or reasoning result is not satisfactory.

The action results could provide more relevant symptoms

(either positive or negative) which can be used to (1) collect

more evidence to increase User Belief ; or (2) verify the

correctness of given hypothesis. Active actions could be as

common as common network utilities Ping, traceroute, or

specifically designed network tools [32], [27], [31], [30].

Different overlay application may offer different action set

based on various factors, such as running platform, availability.

Each action can be associated with a cost value (denoted as

Ti) administratively with the consideration such as network

intrusiveness or coverage (e.g. number of hops), overlay node

importance, security risk, etc..

For simplicity, we use C to represent components need

be verified in the following. Given a set of components

C = {C1, C2. · · · , CN}, and a set of actions A =
{A1, A2, · · · , AM}, here each action has its coverage de-

noted as: Ai = {Cx, Cy, · · · , Cz} (Ai ∈ A). Obviously

C ⊆ ⋃
Ai∈A Ai. Action Selection is to find a set of actions

A′ (A′ ⊆ A) such that: (1) all components in C are covered;

(2) the total cost T =
∑

Ai∈A′ T (Ai) is minimized.

The task of Action Selection is to find the least-cost actions

to verify all components C included in the hypothesis that has

highest credibility. As the size of C could grows very large,

the process of selecting the minimal cost action that verifies

C becomes non-trivial. This problem can be modelled as a

weighted set-covering problem, which is NP-complete. Thus,

we developed a heuristic greedy set-covering approximation

algorithm to solve this problem.

IV. SYSTEM EVALUATION

In this section, we present our evaluation metrics, simulation

methodology and simulation results.

A. Evaluation Metrics

The performance and accuracy are the two most important

factors for evaluating fault diagnosis techniques. Performance

is measured by fault detection time T , which is the time

between receiving the fault symptoms and identifying the root

faults. The fault diagnostic accuracy depends on two factors:

(1) the detection ratio (α), which is the ratio of the number

of true detected root faults (Fd is the total detected fault set)

to the number of actual monitored and occurred faults Fh,

formally α = |Fd∩Fh|
|Fh| ; and (2) false positive ratio (β), which

is the ratio of the number of false reported faults to the total

number of detected faults; formally β = |Fd−Fd∩Fh|
|Fd| [17]. The
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Fig. 2. The Impact of Network Topology and Size (a) Detection time T (b) Detection rate α (c) False positive rate β

scalability and robustness are also critical for a distributed fault

diagnosis system.

B. Simulation Methodology

We consider the following dimensions and parameters for

simulation.

• Underlying Network Topology and Size: We use a syn-

thetic topology generator BRITE [23] with three types of

topology model. The number of nodes ranges from 100

to 30,000. In addition, we import to BRITE using real

network AS topology data from Skitter [24] with each

set more than 20,000 ASes for evaluation.

• Overlay Network Topology: The distribution of overlay

nodes provides different observation points and may sig-

nificantly impact the performance of EUDiag. We define

three different overlay topologies: edge overlay (overlay

nodes located on edge networks); core overlay(overlay

nodes located on core networks); mixed overlay (overlay

nodes located on both edge and core networks).

• Overlay Weight K and system parameter γ: K and γ
are model-dependent and should be properly adjusted to

reflect the real system characteristics. We assign overlay

nodes with prior fault probability uniformly distributed

among 1-30%.

• Link Loss Distribution: We adopt LLRD1 model as

shown in [11], 95% links are classified as reliable

with prior fault probability uniformly distributed among

0−0.3%; 5% links are classified as faulty with prior fault

distributed on 5 − 10%.

C. The Impact of Network Topology and Size

There are four types topologies simulated by using BR-

TIE [23]: (1) AS-level Waxman model; (2) AS-level Barabasi-

Albert model; (3) Hierarchical model; (4) Skitter [24]. For the

first three topology model, we simulate three different scenar-

ios: (1) use small-size network (nodes between 100 and 1,000

and placed in relatively small area of the plane) to simulate

regional collaborative ISPs and their overlay networks; (2) use

medium-size network (nodes between 1,000 and 10,000 and

wide-distributively placed in the plane) to simulate national

collaborative ISPs and their overlay networks; (3) use large-

scale network (nodes between 10,000 and 30,000) to simulate

the Internet. For each generated topology, we select 10% of

total nodes as overlay nodes with the three distribution: edge,

core and mixed overlay topology. Then we run simulation 10

times independently. We found the different overlay topologies

showing similar results with given underlay topology. In the

following, we will only show the results using mixed overlay

topology.

The simulation results are shown in Fig.2. Apparently with

the increase of network size, the more chance that the network

components have problems. With the properly integration

of active actions and passive analysis, when the network

size increased 1000% from small-sized network to medium-

sized network; and further from medium-sized network to

large-scale network, the corresponding detection time is just

increased only 2 times (approximately from 10 to 20 seconds)

and 3 times respectively (approximately from 20 to 60 sec-

onds). For the detection rate and false positive rate, the change

rate is within 10% with the increase of network size. As shown

in Fig.2, there are no evident difference for different network

topology.

V. INTERNET EXPERIMENTS

The motivation of this work is to tackle new challenges

in overlay fault diagnosis. We are interested (1) to show the

performance of EUDiag in the real system; (2) to prove collab-

oration with information sharing among overlay applications

and overlay service providers an effective approach in overlay

fault diagnosis.

TABLE II
EXPERIMENTAL OVERLAY TOPOLOGY

OSP-1 OSP-2
Planet-Lab Node Dist 1 2 3 1 2 3

N. America (edu) (346) 30 55 25 30 0 25
N. America (non-edu) (28) 3 10 4 3 0 4
S. America (18) 4 0 2 4 5 2
Europe (230) 20 0 20 20 35 20
Asia (138) 7 0 6 7 25 6
Oceania (9) 2 0 2 2 4 2

A. Methodology

We implemented EUDiag on the Planet-Lab. Based on

geographic locations, Planet-Lab nodes are mainly distributed

into 5 zones: North America, Source America, Europe, Asia
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and Oceania zones. North America nodes can be further

classified as EDU and non-EDU nodes. Thus, all Planet-

Lab nodes can be classified into 6 categories as shown in

TABLE II. We created two OSPs (denoted as OSP-1 and OSP-

2) on Planet-Lab testbed and generated 3 test scenarios:

• Scenario 1: OSP-1 and OSP-2 randomly choose various

number of nodes from each category respectively as

shown in TABLE II.

• Scenario 2: OSP-1 only chooses North America nodes;

however, OSP-2 chooses non North America nodes.

• Scenario 3: OSP-1 first chooses nodes from each cat-

egory; then OSP-2 chooses nodes belonging also from

each category but in different institutes, companies or

countries from those nodes already selected by OSP-1.

In each scenario, for each OSP-i (i = 1, 2), we created three

overlay applications (denoted as App-i1, App-i2 and App-i3)

and each application selects 12 overlay application nodes. For

each overlay application App-ij (j = 1, 2, 3), it adopted two

different topologies: well-distributed and random topology.

For well-distributed topology, we evenly chose application

nodes from each zone; for random topology, we randomly

chose application nodes from all available overlay nodes. In

all scenarios, each application randomly chooses one node

per geographic category if possible as its application agent.

Among all application agents, we randomly choose one as the

monitoring agent. The information about selected application

agents and monitoring agents is sent to all relevant nodes to

report observed symptoms.

For each application, first it measured the topology among

application nodes by simultaneously running ”traceroute” and

converted discovered networks (including unidentifiable net-

work portions) to overlay component IDs. Each node sends the

information about the discovered network (i.e. a serial of com-

ponent IDs) to all destination nodes. There are 12×11 = 132
overlay links for each overlay application. For selected links,

the source nodes will send UDP packets to the destination

nodes. For each experiment, we measured 100 trials and each

trial lasts 15 seconds. During a trial, each selected node sends

100 40-byte UDP packets with sequence number and sending

time.

B. Experiment Results

1) Observation Incompleteness Penalty: For each overlay

application, we control the Observation Ratio (OR) (the ratio

of monitored overlay links to the total links in a given

application). We change OR for each application increased

from 10% to 100% with the increase rate 10%. In this

way, the overall Observation Ratio of whole OSP is also

controlled accordingly. We found that when OR is relatively

low (10-30%), EUDiag required significantly increased actions

(intrusiveness) (320-470%) to detect faulty components.
2) Collaboration Gain: In our experiment scenario 1, we

created two case studies: (1) OSP-1 and OSP-2 running

EUDiag independently; (2) OSP-1 and OSP-2 collaboratively

running EUDiag. We repeated the same experiment 10 rounds

and 10 times in each round for scenario 2 and 3. From Fig. 3.
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Fig. 3. Collaboration Gain on Detection Time

The collaboration gain in Scenario 1 and 3 are much higher

than scenario 2. From the node distribution in scenario 2,

the two OSPs are not sharing underlying infrastructure. From

another perspective, it shows that distributed approach is more

appropriate for largely dispersed nodes.

3) Posterior and Prior Factors in User Belief Revision:
In Eq. 1, Posterior and Prior User Belief can be combined

seamlessly and adjustable by two parameters: K and γ. Based

on the general monitoring statistics presented in [4], overlay

nodes are getting more and more reliable but still experiencing

high fault probability. In our experiment in the Planet-Lab, K

has been selected between 5-20 and γ is chosen between 1-3,

which can make EUDiag function to produce stable results.

VI. RELATED WORK

In our related work study, we focus on user-level network

measurement and fault diagnosis tools/approaches particularly

for overlay networks. In this section, we classify user-level

fault diagnosis related work into the following categories:

Passive Approach: Various passive monitoring and event

correlation models were proposed including rule-based analyz-

ing system [21], model-based system, case-based diagnosing

system and model traversing techniques. In [19], a model-

based event correlation engine is designed for multi-layer fault

diagnosis. In [15], coding approach is applied to deterministic

model to reduce the reasoning time and improve system

resilience. An interesting incremental event-driven fault rea-

soning technique is presented in [16] and [17] to improve the

robustness of fault localization system.

Measurements Diagnosis Tools: Many end-to-end traffic

measurement tools were proposed for monitoring packet loss

and other path properties for problem diagnosis such as [30],

[32], [31]. These tools are good for diagnosis a specific

network property and not adequate as a general problem

diagnosis in overlay networks. Recently, some researchers

incorporate active probings into fault localization. In [18], an

active probing fault localization system is introduced, in which

pre-planned active probes are associated with system status by

a dependency matrix. An on-line action selection algorithm is

studied in [18] to optimize action selection. Most of these

techniques causes an extensive intrusiveness due to active
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probing and at the same time may not discover intermittent

problems.

Diagnosis Framework: One of the most recent interesting

work is the Tomography-based approach that estimates net-

work performance parameters based on traffic measurement

at a limited subset of the nodes [28], [26]. However, similar

to previous tools, this is still purely active approach which

usually requires extensive probing in order to achieve accurate

results regardless of problem exists or not. Anther one is

the Multiple Vantage Point Approach or PlanetSeer [29] that

locates Internet faults by selectively and periodically invoking

”traceroute” from multiple vantage points. The measurement

model is manually managed and only matches the application

domain direction of data flow. Unlike these approaches which

use active monitoring constantly to discover problems when

occurs, our approach exploits the correlation of naturally

observed symptoms to identify problem or necessary actions

are initiated for fine-grain diagnosis.

To the best of our knowledge, EUDiag is the first user-

level overlay fault diagnosis framework that integrates active

monitoring with passive fault reasoning based on dynamic

revising User Beliefs.

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel User Belief based approach (called

EUDiag) that could dynamically and incrementally encode

user common belief with investigated overlay and underlay

components, and it also seamlessly integrates passive and

active fault reasoning in order to reduce fault detection time as

well as improve the accuracy of fault diagnosis. In our future

work, we will study symptom observation temporal factor and

the inherent correlations between different types of symptoms

and investigate how integrated symptom analysis and fault

reasoning can improve the performance as well as the accuracy

of overlay fault localization.
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