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Abstract—Overlay networks have emerged as a powerful
and flexible platform for developing new disruptive network
applications. The attractive characteristics of overlay networks
such as planetary-scale distributions, user-level flexibility (e.g.
overlay routing) and manageability bring to overlay fault di-
agnosis new challenges, which include inaccessible underlying
network information, incomplete and inaccurate network status
observations; dynamic symptom-fault causality relationships, and
multi-layer complexity. To address these challenges, we propose a
distributed user-level Belief Revision based overlay fault diagnosis
technique called EUDiag. EUDiag can passively use observed
overlay symptoms as reported by overlay monitoring agents
to correlate and diagnose faults, and select the least-costly
appropriate probing actions whenever necessary to enhance the
passive fault reasoning results. EUDiag adapts to the changes
in highly dynamic overlay networks by incrementally revising
user beliefs based on new observed overlay symptoms. EUDiag
can diagnose faults without relying on underlying network
fault probabilistic quantifications (e.g. prior fault probability).
Simulations and experimental studies show that EUDiag can
efficiently (e.g. low latency) and accurately localize root causes of
overlay faults/problems, even when the observed symptoms are
incomplete.

I. INTRODUCTION

Overlay service model [1] has been widely adopted by
research community [3][6][22] as well as commercial Overlay
Service Providers (OSPs) [2][5] as an effective approach
to implement disruptive planetary-scale network applications.
However, overlay applications are prone to variety of faults
across multiple layers such as fiber cuts, router misconfig-
urations, or overlay node outages. These faults usually can
be observed as certain end-to-end network disorders [4][29]
(e.g. packet loss or abnormal latency) and manifested as
trouble tickets or monitoring alerts. The performance and
reliability of overlay applications depend on the capability of
overlay networks to quickly and accurately detect and diagnose
faults so as to dynamically adjust their topologies [8]. How-
ever, traditional fault management techniques [14][17][18] and
proprietarily developed overlay fault detection and diagnosis
approaches [8][12][26][29] can not satisfy new requirements
and tackle new challenges in dynamic overlay networks.

A. New Challenges in Overlay Fault Diagnosis

We believe the following new characteristics and challenges
decide overlay fault diagnosis has to adopt a new approach,
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which is the focus of this work:

o Inaccessible underlying network information and incom-
plete network status observation: In overlay network
domain, overlay services are provisioned, operated by
OSPs on the top of opaque underlying networks. Overlay
fault diagnosis technique must be developed based on
incomplete and insufficient user-level observations.

o Planetary-scale and widely distributed service infrastruc-
ture: Overlay services usually run across multiple ISPs
and are widely distributed [2][3]. Multiple overlay appli-
cations (e.g. Yahoo, Amazon) may co-exist on top of the
common overlay network infrastructure (e.g. Akamai).

o Multi-layer complexity and dynamic symptom-fault
causality: In overlay networks, observed symptoms are
usually not designed for monitoring specific faults (e.g.
malfunctioning router interface). Symptom-fault causality
relationship is dynamic and unpredictable in overlay
networks.

o Fault reasoning goal and granularity: In overlay network,
it becomes more interesting for overlay applications to
effectively bypass detected faulty components instead of
fixing them, which is very likely impossible (e.g. for
components owned by ISPs). Thus, for overlay fault rea-
soning, coarse-grained fault reasoning result is acceptable
and may be more preferable in order to improve fault
diagnosis and recovery efficiency.

Considering the above challenges, we argue that in
planetary-scale multi-layer overlay networks, overlay fault
diagnosis should aim at the following objectives. They should:

e be able to isolate multiple simultaneous faults as well
as faults on multiple layers. This feature improves the
technique’s applicability to planetary-scale systems; and
provides critical information for taking appropriate over-
lay fault recovery strategies.

o be flexible to diagnosis granularity. Overlay applications
are service-oriented. The goal of overlay fault diagnosis
is to help overlay applications bypass faulty components
(e.g. routers in ISPs). Thus, coarse-grained diagnosis
is more preferable by considering the effectiveness and
performance of overlay fault diagnosis.

o be resilient to incomplete and spurious symptoms. Over-
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lay fault diagnosis technique should be robust and effec-
tive in handling incomplete or even spurious symptoms.

o be distributed and collaborative. Scalability and wide
distribution of overlay applications [2] decide that over-
lay fault diagnosis has to adopt a distributed approach
collaboratively to improve the diagnosis performance,
minimize network intrusiveness and tackle observation
incompleteness.

o be adaptive to new observations. Previous diagnosis
result should be incrementally revisable by considering
new evidence/symptoms.

o be efficient and reasonably accurate. Overlay fault diag-
nosis accuracy should be considered as a trade-off be-
tween response time and overlay recovery effectiveness.

o be passive and active integrated. If passive diagnosis
results are not sufficient and satisfactory in terms of their
credibility, a set of optimally selected probing actions
should be selected to actively discover more fault indica-
tions to facilitate overlay fault diagnosis process.

B. Our Contributions

This paper investigated an interesting and timely problem:
overlay fault diagnosis, from user perspective without relying
on any probability fault diagnosis model. The paper makes the
following contributions to the field of overlay fault diagnosis.

« It advances the state-of-the-art in overlay fault diagnosis
by providing a novel user-level overlay fault reasoning
framework. To the best of our knowledge, this is the first
comprehensive user-level distributed and collaborative
overlay fault diagnosis framework.

« It proposes a novel concept Belief Revision to flexibly
correlate dynamic overlay symptom-fault causality, which
can also be incrementally revised when new symptoms
observed.

« It seamlessly incorporates active actions into passive fault
reasoning process to achieve better diagnosis performance
and accuracy.

o It provides an unified framework with incremental Belief
Revision capability for OSPs collaboratively sharing mon-
itoring information. The experiments also show Collabo-
ration Gain for OSPs by sharing network observations.

The paper is organized as the following. In Section II,
we formalize the problems and overview EUDiag system.
In Section III, we introduce the concept of Belief Revision
and elaborate technique details of EUDiag. In Section IV, we
present our simulation studies and real experiment results to
evaluate EUDiag performance and accuracy. In Section VI,
related work is discussed. Section VII gives our conclusions
and future work.

II. SYSTEM OVERVIEW AND PROBLEM
FORMALIZATION

The aim of this work is to provide a general and practical
fault diagnosis framework for overlay users, developers and
operators (e.g. Planet-lab [3], Akamai [2]) to collaboratively
monitor and analyze overlay network status and identify faults

(e.g. the overlay or underlay component which caused packet
loss) that degrade the application performance. Overlay service
model aims at providing planetary-scale services on the top of
wide area underlying network infrastructure (e.g. the Internet).

TABLE I
OVERLAY NETWORK DISTRIBUTION

‘ ‘ | Overlay Service Providers
[

Planet-Lab | Akamai
Nodes ~800 ~25,000
Networks ~400 ~1,000
Countries ~30 ~70
Applications CoDeeN, CoralCDN | Yahoo, Facebook

As shown in TABLE I, OSPs usually provide planetary-
scale network infrastructure and host multiple long-running
overlay applications. However, among OSPs and even among
applications hosted by the same OSP, they usually do not share
monitoring information and use their own monitoring systems,
which may still rely on centralized monitoring mechanism
(e.g. [4]) to aggregate widely distributed and less likely rele-
vant events. As shown in [13], the stability of edge network is
less than backbone network. Thus, proximal users’ observation
(based on geographical or network distribution) are more likely
relevant. Thus, to tackle the above inefficiency, we propose
a new overlay diagnosis framework called EUDiag, which
adopts a distributed and collaborative approach such that it
can (1) effectively deal with observation incompleteness by
collaboratively sharing information; (2) efficiently aggregate
relevant events/observations in a distributed fashion.

In EUDiag framework, there are a set of Overlay Ser-
vice Providers as O = {OSP;,08P,,--- ,0SPy}. For
each OSP,, it hosts a set of overlay applications APP;, =
{appi1,appia,--- ,appiar}. For each overlay application
app;; hosted by OSPF;, it may generate a set of symptoms
Sij = {sijl,sijg,-~~ ,SijQ}. We assume all OSPs collab-
oratively host a monitoring infrastructure that consists of a
set of well-distributed overlay monitoring agents (my) M =
{m1,ma, -+, mg}. Accordingly, each application app;; may
also designate K application monitoring agents (denoted as
appAgentsi—“j). Here, 1 < i < N,1 < j < M1<Ek<
K;K,M,N > 1. Overlay application nodes should report
observed symptoms to their proximate appAgentsfj, which
further aggregated to my. There are many techniques proposed
for finding proximate agents such as the one discussed in [10].
In this manner, the symptoms from same application app;; are
partitioned into S;; = s;; U s?;--- U sf5.

For each distributed overlay monitoring agent my, the pro-
cesss of overlay fault diagnosis is to find credible hypothesis
(Hy), which can best explain all received symptoms {sf“]} In
order to make the following discussion easier and clearer, we
first define a few important concepts and their notations in
overlay network context.

Definition 1: Overlay Network Component Set (C): C con-
sists of Overlay Component Set C° and Underlay Component
Set C* (C = C*UC"). In EUDiag framework, each object ¢
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(c € O) is assigned an unique ID as the following: if ¢ € C°)
(e.g. overlay node), ¢ has a 1-byte prefix equal to ”17; if
¢ € C* (e.g. network router), ¢ has a 1-byte prefix equal to ’0”.
The suffix of each object is a 128-bit output from hash function
(e.g. MD5) H(getASN(c), getNetID(c)). Here, getASN and
getNetID are two utility functions to obtain AS number (ASN)
and corresponding network ID (NetID) of a given component
c. In order to avoid ambiguity of Variable Length Subnet
Masking (VLSM) adopted in CIDR notation, and considering
the coarse-granular overlay fault diagnosis feature, we simply
use original classful network ID as NetID of a given compo-
nent. We believe the granularity given by NetID is sufficient
for overlay applications to take necessary countermeasures.
Thus, in EUDiag framework, each component is assigned a
136-bit unique component ID.

This reduction can significantly improve the efficiency of
fault diagnosis in EUDiag without losing necessary gran-
ularity. Each logic component (c;) may consist of multiple
physical hops, which may have different overall prior fault
effect. We define a parameter called Component Weight (W, ),
a number of physical hops contained in c¢;, to describe such
characteristic. For overlay nodes existing on end-user networks
(EUN), their weights are all set to 1.

EUDiag does not assume knowing or be able to discover
complete network members (e.g. underlying routers in ASes).
For the unidentifiable network portion (e.g. routers don’t
response to traceroute ), we compute hash function on the
following 4-tuple: the ASN and NetID of the hops before and
after the unidentifiable network portion.

Definition 2: Overlay Symptoms (S): Network symptoms
can be classified into various categories and represented differ-
ently. In EUDiag, Overlay Symptoms are defined as end-to-end
observations of network disorders (e.g. reachability outage or
high packet loss ratio, abnormal latency) on overlay links. For
simplicity without losing generality, we assume the category
of all overlay symptoms are same (e.g. packet loss). Thus, each
overlay symptom (s) can be simply represented by a sequence
of overlay network components.

The symptoms could be positive or negative. Negative
symptoms (also denoted as S™), s;, (s; € S), indicate certain
network disorder that involves at least two of the identifiable
components (overlay or underlay). Negative symptoms can be
generated as a result of application notification or monitoring
probing. However, positive symptoms (also denoted as ST
s¢, which could be inferred only as a result of infrastructure
monitoring probings, indicate healthy status for all identifiable
components in the diagnosed path.

Definition 3: Overlay Faults (F): F is a set of faulty
components. If the corresponding faulty components are over-
lay components, we call them overlay faults denoted as
F°. Similarly, if the corresponding components are underlay
components, we call them underlay faults denoted as F™.
F = F° U F*“. Distinguishing faults between overlay and
underlay components has significant impact on overlay fault
recovery. Generally, if the fault is caused by F°, an overlay
application may easily choose a backup overlay node from the

same site. On the other hand, if the fault is caused by F™, then
an overlay application need find another overlay node [8] to
bypass the faulty underlay components.

III. OVERLAY FAULT DIAGNOSIS USING BELIEF
REVISION

A. User Beliefs

Overlay fault diagnosis has to be conducted from user-level.
Many intelligent tools/utilities were proposed for end users to
generate more informative symptoms [32][31][27]. However,
how to systematically combine/integrate User Beliefs to find
best explanation for observed symptoms is an unresolved
issue.

Belief Function can be defined specifically based on the
given problem domain. To make it more applicable, EUDiag is
designed based on four most common but critical User Beliefs
in overlay fault diagnosis domain. In the following, we first
discuss these four User Beliefs (knowledge), then introduce a
novel mechanism to compute User Belief value:

o Belief-1: Generally, overlay component has higher prior
fault probability than underlay component [4][13]. Thus
we have p(le;) > p(Oc;). Here, l¢; and Oc; represent
any overlay and underlay component respectively. For
instance, the prior fault probability of network router can
be safely estimated less than 10~%. However, the prior
fault probability of overlay node can be commonly greater
than 10~2 [4]. Thus, we prefer using overlay components
to explain observed overlay symptoms.

o Belief-2: The probability of simultaneous underlay faults
is low [14][17]. The underlying faults for a logic underlay
component ¢; may contain multiple physical components.
Thus, the prior fault probability of a logic underlay
component c; increases with the more contained physical
components (p(c;) = 1—(1—p)™. p is estimated average
prior fault probability of each physical component). Thus,
we prefer using least weight components to explain
maximum number of symptoms.

o Belief-3: The probability of multiple appAgents generate
false alarms simultaneously is low [17][16]. Thus, the
same component the more symptoms associated with or a
hypothesis (a set of components which explains observed
symptoms), the more likely the component is faulty or the
hypothesis is true.

o Belief-4: If negative overlay symptom is received, we
believe at least one component (either overlay or un-
derlay component) is faulty; if positive symptom re-
ceived, we believe all relevant components are in good
status [14][16].

User-level overlay fault diagnosis is a process of reasoning
root causes that best explain observed overlay symptoms by
combining user beliefs. We show in the following example
(as shown in Fig. 1) that the above four User Beliefs can
cover all different user observations and provide fundamental
support for user-level fault reasoning. In an extreme scenario,
when overlay monitoring agent my, only received one overlay
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Fig. 1. User Belief Based Overlay Fault Diagnosis

symptom (e.g. s4 in Fig. 1), we still can make reasonable
fault inference that at lease one of the components (e.g.
lcg, Ocs, 1c7) is faulty based on Belief-4. Thus, we have the
following hypotheses: hy = {1cg}; he = {Ocs}; hs = {ler )
hy = {lcs,0c7}; .5 hy = {lcg,0cs,1lcr}. According to
Belief-2, we believe hi,hy,hs are more likely to happen.
Further, according to Belief-1, we want to conclude that hy
or h3 should be considered first. If we have the knowledge on
prior fault probabilities (p(1lcg and p(ley)) of overlay nodes
lcg and 1c7, then one of the candidates with higher prior fault
probability should be investigated first. In another example, if
the monitoring agent my, received both s, and s3, according to
Belief-2, we make a hypothesis h = {Ocs, 1c4}. Then we need
combining Belief-1 and Belief-2 to choose between Ocs and
lcy. The challenge here is how to automate such intelligent
analysis process by properly combining all user beliefs with
appropriate and adjustable belief weights, which decide the
effect of different beliefs in final decision.

B. Incremental Belief Revision

We propose a novel user-level Belief Function (BF) (as
shown in Eq.1) that seamlessly integrates and quantify all
above User Beliefs with the consideration of weight adjustabil-
ity and belief incremental revision capability. Different overlay
fault diagnosis system can adjust several system parameters
to optimize the belief weights and improve the credibility of
Belief Revision function. In Fault Reasoning module, we use
the Belief Function (BF') as a criteria to find faulty component
that have maximal indications explaining observed overlay
symptoms.

BF(e) = 1= [] p@]xDISel+(14+PF(e)xK)W(c)]

aGASCi

ey
The Belief Function BF (c;) is elaborated as the following:
e S, is the set of observed overlay symptoms that contain
the same component ¢;. |S,,|, the size of such symptom
set, shows the strength of observed indications regarding
if the component ¢; could be faulty. For example, in Fig.1,

if we received all symptoms, then |So.,| = 2;
. ASci is the set of different application monitoring agents
(appAgentfj) reporting the symptoms contained in S,,;

e p(a) 1is the probability that a monitoring agent
(appAgentfj) sends false alarms or spurious symptoms,
which can be observed based the corresponding agent’s
historic records. For example, the ratio of the total
number of reported false alarms over the total number
of reported symptoms. Initially p(a) is set to 0, which
means the system initially trusts all monitoring agents.
Thus, (1—]],c As,, p(a)) shows that the probability that
at least one monitoring agent in ASci reports the true
observations;

e W(c;) is the weight of component ¢;, the number of
individual network hops/routers in this component. The
higher the value of W (c;) is, the more chance that ¢;
may become faulty by considering [1 — (1 — p)W ()]
as the probability of one physical machines contained in
¢; faulty (p is the prior fault probability of a physical
machine which we don’t need to know).

o PF is an utility function to get the prefix of the component
¢; to distinguish overlay and underlay components.

o« K (K > 1)is the overlay weight parameter used to reflect
the fact that the average overlay component prior fault
probability is much higher than underlay component’s.
However, K should be adjusted to reflect the real system.
K can be estimated by performance metrics (e.g. average
upTime, average packet drop ratio);

e v (v > 0)is a system parameter to adjust the effect (belief
weight) of estimated prior knowledge (K and W (c¢;)) and
posterior observations (S, ).

Before performing Belief Revision calculation, the pre-
processing should be conducted to remove all components
contained by ST from the component set covered by S™. This
pre-processing could effectively reduce irrelevant components
from investigated component set.

Incremental Belief Revision with New Evidence: Since
individual monitoring agent may continuously receive new
symptoms, and collaboration among monitoring agents may
also need correlate distributed User Beliefs, it is important
that Belief Revision can be incrementally conducted based on
previous User Belief result and new evidence. Here we do
not consider temporal correlations among observed symptoms
and assume Belief Revision are conducted within valid obser-
vation time window. We mark the consideration of integrating
temporal factor into Belief Revision as our future work.

Let T, = HG.EASC, p(a) and S, = {s'} NS, (s’ is the new
observed symptom), we have the following incremental Belief
Revision formula as shown in Eq.2. By using the previous User
Belief result BF™ and T, as well as the spurious symptom
rate of the appAgent that reported the new symptom, we
can efficiently revise the previous User Belief to produce a
new revised User Belief BF™*!. This is a critical feature in
achieving incremental local Belief Revision and global belief
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aggregation and revision capabilities.

BF™1(c;|S,,) = (1+ play) + P52 ) BF (¢S,
+ (1 + V)Tn + ('YTTL - 1)])((15/)
~ (14 2p(as))BF"(ci|S,)
+ (1 + V)Tn + (’yTn - 1)]?(@5/)
(2
C. Distributed & Collaborative Overlay Fault Reasoning

Once having User Belief on each candidate component, we
need properly define a Belief Threshold By to evaluate the
obtained User Beliefs. Bry is model-dependent and should
be considered as a trade-off among fault detection rate, false
alarm rate and detection time. For all components (c;) with
BF(¢;) > Brp, we can dynamically create the following
Overlay Reasoning Belief Graph (ORBG):

« For every selected overlay or underlay components with
enough User Belief (e.g. BF(c;) > Brp), associate a
vertex ¢;;

« For every overlay symptom containing at least one com-
ponent with enough User Belief, associate a vertex s;

o For every selected component ¢; and its related symp-
toms, associate an edge e;; with weight equal to BF'(¢;);

Given ORRG, the task of fault reasoning is to find a min-
imal set of components (the hypotheses) that can explain all
observed symptoms. This a typical Set-covering problem that
has been proven a NP-hard problem. We use a greedy search
approximation algorithm to fine one, or multiple hypotheses in
the case all hypotheses having same User Belief value. Among
multiple hypotheses, we choose the one with maximum value

of 3 c,en BF(ci)/Ihl.
D. Credibility Evaluation of Fault Hypotheses

The fault hypotheses created by Overlay Fault Reasoning
module may not accurately determine the root faults because
of incomplete symptom observation. Credibility Evaluation
is to measure the hypothesis credibility created in Fault
Reasoning phase. How to objectively evaluate the reasoning
result is crucial and also challenging. We developed a
Credibility Function CF(h) to measure the credibility of
hypothesis h that used to explain observed symptom S.

Zc,;Eh BF(Cl)
YaesCE+ Y o, W)

CF(h) = 3)

CF(h) is essentially the likelihood measurement of the
hypothesis (h) by averaging total User Beliefs over all com-
ponents contained in observed symptoms S. Here, K is the
overlay weight factor, and each overlay symptom involves two
overlay nodes. Since the maximal credibility value can not be
obtained because of the incompleteness property of ORBG,
intuitively, the more relevant symptoms observed and less
relevant components involved, the higher credibility can be
achieved. We develop a credibility algorithm taking into con-
sideration a target Credibility Threshold, Cipreshola, that the
user can configure to accept hypothesis. The initial observation
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is usually not sufficient. Active actions have to be conducted
to enhance or reduce the belief on the proposed hypothesis.
If the threshold is set too high, even correct hypothesis will
be ignored; but if the threshold is too low, then less credible
hypothesis might be selected. Overlay network administrators
can define the threshold based on long-term observation and
previous experience (e.g. detection rate and false alarm ratio).

E. Action Selection Heuristic Algorithm

We take active actions whenever initial symptom observa-
tion is not sufficient or reasoning result is not satisfactory.
The action results could provide more relevant symptoms
(either positive or negative) which can be used to (1) collect
more evidence to increase User Belief; or (2) verify the
correctness of given hypothesis. Active actions could be as
common as common network utilities Ping, traceroute, or
specifically designed network tools [32], [27], [31], [30].
Different overlay application may offer different action set
based on various factors, such as running platform, availability.
Each action can be associated with a cost value (denoted as
T;) administratively with the consideration such as network
intrusiveness or coverage (e.g. number of hops), overlay node
importance, security risk, etc..

For simplicity, we use C to represent components need
be verified in the following. Given a set of components
C {C1,C5.--- ,Cn}, and a set of actions A
{A1,As, -, Apr}, here each action has its coverage de-
noted as: A; = {C.,Cy,---,C.} (A4; € A). Obviously
ccy AieA A;. Action Selection is to find a set of actions
A’ (A’ C A) such that: (1) all components in C are covered,
(2) the total cost T = ZAieA, T(A;) is minimized.

The task of Action Selection is to find the least-cost actions
to verify all components C' included in the hypothesis that has
highest credibility. As the size of C' could grows very large,
the process of selecting the minimal cost action that verifies
C becomes non-trivial. This problem can be modelled as a
weighted set-covering problem, which is NP-complete. Thus,
we developed a heuristic greedy set-covering approximation
algorithm to solve this problem.

IV. SYSTEM EVALUATION

In this section, we present our evaluation metrics, simulation
methodology and simulation results.

A. Evaluation Metrics

The performance and accuracy are the two most important
factors for evaluating fault diagnosis techniques. Performance
is measured by fault detection time 7', which is the time
between receiving the fault symptoms and identifying the root
faults. The fault diagnostic accuracy depends on two factors:
(1) the detection ratio (), which is the ratio of the number
of true detected root faults (F} is the total detected fault set)
to the number of actual monitored and occurred faults Fj,,
formally o = %, and (2) false positive ratio (), which
is the ratio of the number of false reported faults to the total
number of detected faults; formally g = % [17]. The
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scalability and robustness are also critical for a distributed fault
diagnosis system.

B. Simulation Methodology

We consider the following dimensions and parameters for
simulation.

o Underlying Network Topology and Size: We use a syn-
thetic topology generator BRITE [23] with three types of
topology model. The number of nodes ranges from 100
to 30,000. In addition, we import to BRITE using real
network AS topology data from Skitter [24] with each
set more than 20,000 ASes for evaluation.

Overlay Network Topology: The distribution of overlay
nodes provides different observation points and may sig-
nificantly impact the performance of EUDiag. We define
three different overlay topologies: edge overlay (overlay
nodes located on edge networks); core overlay(overlay
nodes located on core networks); mixed overlay (overlay
nodes located on both edge and core networks).
Overlay Weight K and system parameter y: K and -y
are model-dependent and should be properly adjusted to
reflect the real system characteristics. We assign overlay
nodes with prior fault probability uniformly distributed
among 1-30%.

Link Loss Distribution: We adopt LLRD; model as
shown in [11], 95% links are classified as reliable
with prior fault probability uniformly distributed among
0—0.3%; 5% links are classified as faulty with prior fault
distributed on 5 — 10%.

C. The Impact of Network Topology and Size

There are four types topologies simulated by using BR-
TIE [23]: (1) AS-level Waxman model; (2) AS-level Barabasi-
Albert model; (3) Hierarchical model; (4) Skitter [24]. For the
first three topology model, we simulate three different scenar-
ios: (1) use small-size network (nodes between 100 and 1,000
and placed in relatively small area of the plane) to simulate
regional collaborative ISPs and their overlay networks; (2) use
medium-size network (nodes between 1,000 and 10,000 and
wide-distributively placed in the plane) to simulate national
collaborative ISPs and their overlay networks; (3) use large-
scale network (nodes between 10,000 and 30,000) to simulate
the Internet. For each generated topology, we select 10% of

Networ

0
10000 100

rk size

100000 1000 10000
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100000

The Impact of Network Topology and Size (a) Detection time 7' (b) Detection rate « (c) False positive rate (3

total nodes as overlay nodes with the three distribution: edge,
core and mixed overlay topology. Then we run simulation 10
times independently. We found the different overlay topologies
showing similar results with given underlay topology. In the
following, we will only show the results using mixed overlay
topology.

The simulation results are shown in Fig.2. Apparently with
the increase of network size, the more chance that the network
components have problems. With the properly integration
of active actions and passive analysis, when the network
size increased 1000% from small-sized network to medium-
sized network; and further from medium-sized network to
large-scale network, the corresponding detection time is just
increased only 2 times (approximately from 10 to 20 seconds)
and 3 times respectively (approximately from 20 to 60 sec-
onds). For the detection rate and false positive rate, the change
rate is within 10% with the increase of network size. As shown
in Fig.2, there are no evident difference for different network
topology.

V. INTERNET EXPERIMENTS

The motivation of this work is to tackle new challenges
in overlay fault diagnosis. We are interested (1) to show the
performance of EUDiag in the real system; (2) to prove collab-
oration with information sharing among overlay applications
and overlay service providers an effective approach in overlay
fault diagnosis.

TABLE I
EXPERIMENTAL OVERLAY TOPOLOGY

| OSP-1 [ OSP-2 |
Planet-Lab Node Dist [T ]2 3 |1 ]2 ]3|
N. America (edu) (346) 30 | 551251300 25
N. America (non-edu) (28) 3 10 | 4 3 0 4
S. America (18) 4 0 2 4 5 2
Europe (230) 20|10 20 | 20 | 35 | 20
Asia (138) 7 0 6 7 25 | 6
Oceania (9) 2 0 2 2 4 2

A. Methodology
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We implemented EUDiag on the Planet-Lab. Based on
geographic locations, Planet-Lab nodes are mainly distributed
into 5 zones: North America, Source America, Europe, Asia



and Oceania zones. North America nodes can be further
classified as EDU and non-EDU nodes. Thus, all Planet-
Lab nodes can be classified into 6 categories as shown in
TABLE II. We created two OSPs (denoted as OSP-1 and OSP-
2) on Planet-Lab testbed and generated 3 test scenarios:

e Scenario 1: OSP-1 and OSP-2 randomly choose various
number of nodes from each category respectively as
shown in TABLE II.

o Scenario 2: OSP-1 only chooses North America nodes;
however, OSP-2 chooses non North America nodes.

o Scenario 3: OSP-1 first chooses nodes from each cat-
egory; then OSP-2 chooses nodes belonging also from
each category but in different institutes, companies or
countries from those nodes already selected by OSP-1.

In each scenario, for each OSP-i (i = 1, 2), we created three
overlay applications (denoted as App-il, App-i2 and App-i3)
and each application selects 12 overlay application nodes. For
each overlay application App-ij (j = 1, 2, 3), it adopted two
different topologies: well-distributed and random topology.
For well-distributed topology, we evenly chose application
nodes from each zone; for random topology, we randomly
chose application nodes from all available overlay nodes. In
all scenarios, each application randomly chooses one node
per geographic category if possible as its application agent.
Among all application agents, we randomly choose one as the
monitoring agent. The information about selected application
agents and monitoring agents is sent to all relevant nodes to
report observed symptoms.

For each application, first it measured the topology among
application nodes by simultaneously running “traceroute” and
converted discovered networks (including unidentifiable net-
work portions) to overlay component IDs. Each node sends the
information about the discovered network (i.e. a serial of com-
ponent IDs) to all destination nodes. There are 12 x 11 = 132
overlay links for each overlay application. For selected links,
the source nodes will send UDP packets to the destination
nodes. For each experiment, we measured 100 trials and each
trial lasts 15 seconds. During a trial, each selected node sends
100 40-byte UDP packets with sequence number and sending
time.

B. Experiment Results

1) Observation Incompleteness Penalty: For each overlay
application, we control the Observation Ratio (OR) (the ratio
of monitored overlay links to the total links in a given
application). We change OR for each application increased
from 10% to 100% with the increase rate 10%. In this
way, the overall Observation Ratio of whole OSP is also
controlled accordingly. We found that when OR is relatively
low (10-30%), EUDiag required significantly increased actions
(intrusiveness) (320-470%) to detect faulty components.

2) Collaboration Gain: In our experiment scenario 1, we
created two case studies: (1) OSP-1 and OSP-2 running
EUDiag independently; (2) OSP-1 and OSP-2 collaboratively
running EUDiag. We repeated the same experiment 10 rounds
and 10 times in each round for scenario 2 and 3. From Fig. 3.
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Fig. 3. Collaboration Gain on Detection Time

The collaboration gain in Scenario 1 and 3 are much higher
than scenario 2. From the node distribution in scenario 2,
the two OSPs are not sharing underlying infrastructure. From
another perspective, it shows that distributed approach is more
appropriate for largely dispersed nodes.

3) Posterior and Prior Factors in User Belief Revision:
In Eq. 1, Posterior and Prior User Belief can be combined
seamlessly and adjustable by two parameters: K and . Based
on the general monitoring statistics presented in [4], overlay
nodes are getting more and more reliable but still experiencing
high fault probability. In our experiment in the Planet-Lab, K
has been selected between 5-20 and + is chosen between 1-3,
which can make EUDiag function to produce stable results.

VI. RELATED WORK

In our related work study, we focus on user-level network
measurement and fault diagnosis tools/approaches particularly
for overlay networks. In this section, we classify user-level
fault diagnosis related work into the following categories:

Passive Approach: Various passive monitoring and event
correlation models were proposed including rule-based analyz-
ing system [21], model-based system, case-based diagnosing
system and model traversing techniques. In [19], a model-
based event correlation engine is designed for multi-layer fault
diagnosis. In [15], coding approach is applied to deterministic
model to reduce the reasoning time and improve system
resilience. An interesting incremental event-driven fault rea-
soning technique is presented in [16] and [17] to improve the
robustness of fault localization system.

Measurements Diagnosis Tools: Many end-to-end traffic
measurement tools were proposed for monitoring packet loss
and other path properties for problem diagnosis such as [30],
[32], [31]. These tools are good for diagnosis a specific
network property and not adequate as a general problem
diagnosis in overlay networks. Recently, some researchers
incorporate active probings into fault localization. In [18], an
active probing fault localization system is introduced, in which
pre-planned active probes are associated with system status by
a dependency matrix. An on-line action selection algorithm is
studied in [18] to optimize action selection. Most of these
techniques causes an extensive intrusiveness due to active
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probing and at the same time may not discover intermittent
problems.

Diagnosis Framework: One of the most recent interesting
work is the Tomography-based approach that estimates net-
work performance parameters based on traffic measurement
at a limited subset of the nodes [28], [26]. However, similar
to previous tools, this is still purely active approach which
usually requires extensive probing in order to achieve accurate
results regardless of problem exists or not. Anther one is
the Multiple Vantage Point Approach or PlanetSeer [29] that
locates Internet faults by selectively and periodically invoking
“traceroute” from multiple vantage points. The measurement
model is manually managed and only matches the application
domain direction of data flow. Unlike these approaches which
use active monitoring constantly to discover problems when
occurs, our approach exploits the correlation of naturally
observed symptoms to identify problem or necessary actions
are initiated for fine-grain diagnosis.

To the best of our knowledge, EUDiag is the first user-
level overlay fault diagnosis framework that integrates active
monitoring with passive fault reasoning based on dynamic
revising User Beliefs.

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel User Belief based approach (called
EUDiag) that could dynamically and incrementally encode
user common belief with investigated overlay and underlay
components, and it also seamlessly integrates passive and
active fault reasoning in order to reduce fault detection time as
well as improve the accuracy of fault diagnosis. In our future
work, we will study symptom observation temporal factor and
the inherent correlations between different types of symptoms
and investigate how integrated symptom analysis and fault
reasoning can improve the performance as well as the accuracy
of overlay fault localization.
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