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Abstract: Named Data Networking (NDN) featuring in-

network caching capability is a large effort that 

exemplifies information-centric approach to networking 

by shifting emphasis from hosts to data so as to meet 

growing demand on content. This work explores a 

scheme that enables a NDN domain to make full use of 

its in-network caches to enhance its performance, 

availability, and reliability. Currently, each NDN router 

independently determines what contents to cache and is 

unaware of content cached in nearby routers and thus 

their caches are not utilized in an efficient way. This 

paper proposes to have routers in a NDN domain share 

cached data and coordinate to make caching decisions 

(which is dubbed in-network cooperative caching) and 

formulates it into a constrained optimization problem. 

The Lagrangian relaxation and primal-dual 

decomposition method is applied to decompose the 

optimization problem into object placement 

subproblems and object locating subproblems, each of 

which can be solved in a distributed manner at each 

router, such that the in-network cooperative caching is 

addressed in a distributed way. Our simulation results, 

although preliminary, suggest that our scheme can 

benefit users, Internet Service Providers (ISPs) as well 

as content servers, and the improvement can be as much 

as 88% compared to current NDN caching policy.  

Keywords: In-network caching; Named data 

networking; Cooperative caching; Lagrangian relaxation 

1  Introduction 

To meet the growing demand of content
1
, Information-

Centric Networking (ICN) [1-3] shifts emphasis from 

hosts to data. Named data becomes addressable and 

routable, and are self-identifying and self-authenticating 

such that each data packet is potentially useful to many 

consumers and thus intermediate routers can cache data 

packets passing by (in-network caching) to serve future 

requests without resorting to original data sources.  

Named Data Networking (NDN) [1] is a large effort that 

exemplifies the information-centric approach to 

networking. Currently, each NDN router independently 

determines what content to cache and is unaware of 

content cached in nearby routers. And thus caches at 

routers are not efficiently utilized. For example, there 

are two neighboring routers RA and RB, and their caches 

both can store only one object. Both routers have 

received requests for two objects o1 and o2, and o1 is 

                                                 
1 We will use “content”, “data” and “object” interchangeably.  

more frequently requested. Due to the constraint of 

cache sizes and the unawareness of content cached at 

the other, they both employ Greedy Local (GL) cache 

strategy, i.e., choosing the more popular one, o1, to 

cache, so that more requests can be locally served. In 

such case, the future requests for o2 at both routers have 

to be routed to remote content publisher(s). Instead, if 

the two routers are aware of content cached by the other 

and coordinate in content caching and sharing, they can 

agree upon caching o1 and o2 separately so that all 

future requests for both objects can be served by their 

caches.  

So how a NDN domain makes use of its in-network 

caches would play an important role in enhancing its 

performance, availability, and reliability. More 

specifically, a domain can utilize the caching capacity in 

its routers to cooperatively store inbound traffic so as to 

improve its content delivery performance and reduce its 

upstream bandwidth usage, which is dubbed in-network 

cooperative caching here. This work treats it as an 

optimization problem and applies Lagrangian relaxation 

and primal-dual decomposition to decompose it into 

subproblems so as to solve it in a distributed way. Our 

preliminary results suggest the effectiveness of our 

scheme and note that the concepts and algorithms 

proposed in this paper could apply to almost any other 

ICN [2, 3].  

The rest of the paper is organized as follows. Section 2 

presents the related work and Section 3 formulates the 

in-network cooperative caching problem. In Section 4, a 

conventional method, Lagrangian relaxation and primal-

dual decomposition is applied to conduct the 

cooperative caching in a distributed way; and 

implementation specific issues are discussed. In Section 

5, simulations are conducted to demonstrate the 

effectiveness of distributed in-network cooperative 

caching. And finally Section 6 concludes our work and 

closes with future work. 

2  Related work 

There has been a large body of literature on 

collaborative caching [4-6]. Most consider an overlay 

model where collaborative caching is treated as an 

overlay service independent from the underlay networks, 

and they have limitations to be applied in NDN directly. 

This work either focuses on special-purpose 

applications which put additional constraints on the 

design (e.g., P2P system), or requires the system to be 

constructed as a particular type of topology, e.g., a 
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multicast tree. Extensive calculation is often required, 

which limits their usage in global environment.  

At the end of the 20th century, the caching architecture 

called en-route [7, 8] was developed in which web 

caches are associated with routing nodes in the network 

and are referred to as en-route caches. In this respect, 

these en-route caches are similar to caches built in NDN 

routers and farsighted Wang et al. [9] proposed a 

scheme to dynamically place objects in the caches on 

the path from the server to the client in a coordinated 

fashion to maximize cost saving. It is content servers 

that make the caching decision and thus it is application 

specific such that it requires special configuration at 

applications. To the best of our knowledge, there are 

only a few works on the in-network cooperative caching 

problem. Ref. [10] formulated the cooperative in-

network caching problem into Mixed-Integer Linear 

Programming problem, but the exact solution was not 

discussed at all. Li et. al [11] proposed to have nearby 

routers cooperate in caching to avoid these routers 

storing the same content which improves cache hit ratio. 

But the dissemination of content in this model considers 

nothing about content popularity at routers which may 

not maximize cost saving. Then Cho et al. [12] 

proposed popularity-based and collaborative in-network 

caching in which an upstream router recommends the 

number of chunks to be cached at its downstream router 

and the number exponentially increases as the request 

count (the indicator of popularity) increases. But there 

are still respectful redundancies and content servers are 

involved in the recommendation. 

Based on these works, we assume that content caching 

is an inherent underlay capability and only routers are 

involved in the cooperative caching procedure such that 

existing and future applications would benefit from 

caching without requiring specific configurations. We 

consider an underlay, non-structured flat network model 

where any router can be the caching parent of any other 

router and propose a distributed cooperative caching 

decision making process taking content popularity and 

access costs between routers into account. 

3  Problem Formulation 

This section formulates the in-network cooperative 

caching problem and maps it into an optimization 

problem in a graph as follows. 

Graph construction: the NDN router-level topology of 

a domain is represented as an undirected graph G = (V, 

E, d). V= {v1, v2,· · ·, vN} is the set of routers (|V | = N ). 

E is the set of edges (links). Function d: V ×V → R 

defines the access cost between any two routers; the 

access cost d(i, j) between routers ,i jv v V , i jv v , 

can be explained as the shortest hop count or the 

minimum access delay if there is a path between them 

(i.e., the two routers are connected), otherwise d(i, j) = 

+∞; and ∀  vi ∈ V , d(i, i) = 0. The cache size of router 

vi ∈ V is denoted by Ci; the set of objects to be stored is 

represented by O = {o1, o2, · · ·, oK} (|O| = K); and the 

demand for object ok ∈ O (with size s
k
) at router vi ∈ V 

is denoted by 
k

jr . We assume that the origin of these 

objects is an upstream content server vN +1 outside the 

domain and , ( , 1)iv V d i N D     where D is 

some positive constant. And note that ∀  vi , vj ∈V 

which are connected, ( , ) ( , 1)d i j d i N   i.e., the cost 

of accessing objects from the cache of a router in the 

domain is much smaller than that from the outside 

origin (e.g., fetching data from the cache of another 

router in the domain may reduce latency, load on 

potentially expensive upstream links, and so forth).  

Object placement: we use a series of binary variables 
k

jx s to describe whether router vj  caches object ok .  

Object access/locating: while NDN naturally supports 

multi-path routing, we assume each router chooses one 

path for each object access. An object access relies on 

the location of the object. More particular, upon receipt 

of a request for object ok, router vi serves the request 

from its local cache if ok is locally cached, otherwise 

from some other router if the router caches ok, otherwise 

(ok is not cached in the domain) from its data origin. We 

use a series of binary variables k

ijy s to describe whether 

router vi access object ok from router vj.  

Objective: the objective of in-network cooperative 

caching is to intelligently store these objects in the 

routers of the domain and share them, i.e., determine 

object placement k

jx s and object access k

ijy s, in such a 

way that the caching gain is maximized, i.e., 

maximizing the reduction in total access cost for these 

routers to fetch requested data as compared to that 

without caching. And the objective is formulated as 

follow: 

 
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The constraint in Eq. (4) characterizes the fact that if 

object ok is cached in the domain; if yes, it should be 

fetched from one of those routers hosting it 

(
1

jv V

k
yij



 ), otherwise ( 0

jv V

k
yij



 ) from the origin. 

The constraint in Eq. (5) represents that router vi can 

access object ok from router vj if and only if vj caches ok 

(vi and vj can be the same router). And the constraint in 

Eq. (6) guarantees that the content caching at each 

router subjects to storage capacity constraint. 
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4  Distributed in-network cooperative 

caching  

4.1 Distributed algorithm 

The above in-network cooperative caching problem is 

difficult to solve in a centralized way due to its 

complexity. To achieve a distributed solution with 

heterogeneous settings of input parameters, this work 

applies a conventional method Lagrangian relaxation 

and primal-dual decomposition [13]. We firstly rewrite 

the constraint (5) to be as follow:  

 , ,        (7)k k k k k k

ij j j jy r s x r s v V v V o O      

which is then incorporated into the objective unction in 

Eq. (1) by associating a Lagrangian multiplier 
k

ij . 

Then the Lagrangian dual problem is represented as: 

Minimize  ( )    
                      (8)

Subject to: 0  

k

ij

k

ij

L 

 

 

And the objective function  k
L ij  in the dual problem 

is:  

  

( ) max 

          (9)
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The Lagrangian dual problem can then be decomposed 

into |V| object placement subproblems and |V| × |O| 

object locating subproblems which both can be solved 

in a distributed manner at each router. 

i

k

ij

v V

η


 reflects 

the interest of router 
jv V to store a particular content 

ko O and k

ij  reflects the interest of router iv V  

to access content ko O  from router
jv V . At each 

iteration t, router iv V  first solves the following 

object placement subproblem:  

 Maximize ( )     

Subject to: {0,1} o O           (10)

      

k i

k

k k k k

ij j j
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k

j k

k k

j j
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x
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Objects can be divided into equal sized NDN Data 

packets for convenience. This is the classical 0−1 

knapsack problem and the optimal solution of this 

object placement problem is: 

1 for [1, ),    
( )                      (11)

0 for [ ,| |].

k

j

k z
x t

k z O


 



 

In solution (11) the object set O is sorted in descending 

order by the critical index 

 
i

k k

ij jv V
η r

 and
1

min{ | }
h k

ji
z h s C


  . Router 

vj is responsible to broadcast the |O| vector 

 1
, , ,

k K

j j j j
X x x x , i.e., its temporary placement 

decisions, to other routers in the network. Given the 

placement decisions at all routers, each router vi is able 

to solve the locating subproblem for individual object ok 

such that: 

Maximize (( ( , ))    

Subject to: y {0,1}               

        (12)1            

( )           

k k k k k

ij i ij j

k

ij j

k

ij

vj V
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We denote   k k k k

ij i ij jζ = D d i, j r η r  . Then the 

optimal locating solution for object ok at router vi is as 

follow:  

1 for  with max{ | , ( ) 1},
( )   (13)

0 otherwise.                                                    

k k k

k j ij ij j j

ij

v v V x t
y t

    
 


 

In solution (13), router vi firstly finds the router set V
k
 = 

{vj |vj ∈ V,   1k

jx t  } and then sorts routers of set V
k
 

in descending order by the critical index  k

ijζ .  

With the temporary local object placement and locating 

decisions, each router vi is responsible to update values 

of its k
ij s for the next iteration using sub-gradient 

method [13, 14]:  

( 1) ( ) ( )( ( ) ( )) ( ( , )) (14)k k k k k k

ij ij j ij jt t t x t y t r s f d i j       

where θ(t) = 1/t is the step-size and f() is positively 

correlated to d(i,j), the access cost between routers vi 

and vj.. From the update rule of k

ij , it can be seen that 

when    k k
x t = y tj ij

, either 1 or 0, k
ij  does not 

change in the t+1 iteration indicating that the placement 

of object ok  at router vj is useful to the access of object 

ok at router vi and thus in the next iteration, the chance 

of the decisions for object ok to change should be less. 

Otherwise if ( ) ( )k k

j ijx t y t , then ( 1)k

ij t   decreases 

(the decrease is proportional to the access cost between 

routers vi and vj ) such that in the next iteration, the 

chance of object ok being cached at router vj is less as 

not many routers rely on this copy. The above update 

rule of k
ij  ensures the quick convergence of the 

proposed algorithm. 

The above mentioned Distributed In-networking 

Cooperative Caching (DICC) at router vi ∈ V is 

summarized in Algorithm 1 and Figure 1 shows how 

router vi interacts with others.  

 

Figure 1 Router vi interacts with other routers 

Router vi 

Compute Xi, update Xi 

Compute k

ijy , update k

ij  Other routers 

iX  k

ij  
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4.2 Complexity analysis and implementation 

specific issues  

In the DICC procedure, when a router vi determines its 

object placement and object locating, it requires 

information of the access costs between other routers in 

the domain and itself, Lagrangian multiplier k
ij  and 

placement decision vector snapshot k

jx  at other routers. 

The access cost information at each router should be 

relatively stable (updates only if there is network 

dynamic) and takes space O(N ). In each iteration, 

routers make the object placement or object locating 

decisions in parallel. For local object placement, router 

vi computes the critical index for each object (taking 

time and space O(K)), sorts objects to make caching 

decisions (taking time O(KlgK)), broadcasts Xi and 

receives Xjs from others (taking time O(2(N − 1)K) and 

space O((N − 1)K)) which altogether consume time 

O(K+KlgK+2(N−1)K) and space O(NK); for object 

locating and Lagrangian multiplier k
ij  update, the 

computation of k

ijζ and the pick of the largest k

ijζ  

(taking time and space O(NK)), the update of k

ij   

(taking time and space O(NK)), the broadcast of k

ij and 

the receipt of the Lagrangian multipliers at others 

(taking time O(2NK(N−1)) and space O(NK(N−1))) 

altogether take time O(2N
2
K) and space O(NK(N + 1)). 

So at each router, the required space is upper bounded 

by O(N+N K(N+2)); at each iteration, the time is upper 

bounded by O(KlgK+(2N−1)K+2N
2
K). 

Due to space limit, we only concisely mention the 

implementation of information exchange process. In 

DICC, while routers make decisions in parallel, when 

exchanging information, routers should be arranged in 

some order so that the information report (about object 

placement decision snapshot or object locating decisions) 

at these routers are sequentially processed. More 

specifically, routers request information at other routers 

one by one, i.e., each router firstly requests information 

at the router with order 1, then that with order 2 and so 

on (the name of the Interest packet (request) for 

information at a specific router should include the ID of 

the asked router, iteration # and information type, either 

object placement decision snapshot or object locating 

decisions). In this way, the Interests for the information 

at the same router are likely to be aggregated in 

intermediate routers [1] or be served with copies in 

content stores of intermediate routers such that the 

asked router is less involved in the information 

exchange. Note that any Xi can be succinctly 

represented as a space efficient (Delta) Bloom Filter [15, 
16] to reduce communication cost.  

5  Performance evaluation 

In this section, we evaluate the DICC through 

simulations. We conduct simulations on two practical 

ISP topologies, the topologies of AS 209 and AS 7018 

from Ref. [17], and the basic information of the two 

topologies are summarized in Table I (we set D, the 

delay for any PoP in the two ASes to access an object 

from original data sources, to be 130ms). The PoP-level 

topologies are different from the real router-level 

topologies; however, they still demonstrate the scope 

and the effectiveness of DICC. In our simulations, we 

treat PoP nodes in the underlying network as routers 

with both routing and caching capability, and have them 

make object placement and locating decisions using 

DICC strategy. 

 

The numbers of objects that may be requested by 

routers are 1000 and 10000 in AS 209 and in AS 7018 

respectively. We assume that routers in an AS are 

provisioned with caches of equal size and their demands 

on objects follow Zipf distribution with shape parameter 

α (Zipf preference), i.e. at router vi, the object with rank 

k is requested with rate 
| |

1
/

Ok

i l
r k l

  


  . 

We evaluate the effectiveness of DICC by comparing 

average access delay (the average delay for a router to 

fetch an object) and average hit ratio (the percentage of 

content served by caches of routers in a domain) under 

DICC with that if routers independently manage their 

own caches (i.e., under GL) when cache size and Zipf 

preference α are configured with different values. We 

Algorithm 1: Distributed In-network Cooperative 

Caching 

Input:: ( , ), , ,k k

i id i j s r C  

Output:  * *,k k

i ijx y  

1) Initiate t=0 and coefficient  (0)k

ij  to some 

positive value, , ,i j kv v V o O    

2) Iterate until coefficient k

ij converge to *k

ij : 

(a) Calculate ( )k

ix t according to equation (11), 

ko O   

(b) Broadcast placement decision vector ( )iX t  

snapshot from other routers 

(c) Receive placement decision vectors ( )jX t  

snapshot from other routers, and 
jv V   and 

v vj i  

(d) Calculate ( )k

ijy t according to equation 

(13), 
jv V  ,

ko O  

 (e) Update coefficient k

ij according to 

equation (14) and broadcast them to others, 

,j kv V o O    

3) Obtain the near optimal solution as 
* ( )k k

i ix x t and * ( )k k

ij ijy y t  



Proceedings of IEEE CCIS2012 

 

summarize the results and show them in Figure 2 and 

Figure 3. Figure 2 plots how the average access delay 

and average hit ratio vary with the change of cache size 

and Zipf preference; and due to space limit, we only 

report the results in AS 7018 (trends are consistent with 

results in AS 209). Figure 3 shows the average access 

delay and average hit ratio over all simulations 

(different simulations are with different cache sizes and 

Zipf preferences) in the two ASes.  

 

(a) Delay 

 

(b) Hit ratio 

Figure 2 Simulation results for AS 7018 

 

(a) Delay 

 

(b) Hit ratio 

Figure 3 Simulation results 

From Figure 3, it can be seen that in AS 209, DICC 

reduces average access delay from 51ms to 6ms (about 

88% reduction) and improves average hit ratio from 

0.61 to 0.98 (about 60% improvement); and in AS 7018, 

DICC reduces average access delay from 65ms to 21ms 

(about 68% reduction) and improves average hit ratio 

from 0.50 to 0.86 (about 72% improvement). The 

results demonstrate that with DICC, NDN domains can 

actually further improve its packet delivery performance 

(i.e., smaller delay and higher availability) and reduce 

its upstream bandwidth usage. Meanwhile, due to higher 

hit ratio, more request traffics are served within 

domains and thus the traffics in backbone network and 

the workload of content servers are reduced. 

Figure 2 illustrates that DICC is especially effective 

when Zipf preference α is small. For example, when α = 

0.7 (a typical Zipf preference in Web traffic popularity 

[18]) and cache sizes are set to as large as 100, DICC 

reduces average access delay from 103ms to 14ms and 

improves average hit ratio from 0.21 to 0.94. But when 

Zipf preference increases, the demands on objects of 

routers become more heavy-tailed such that the objects 

additionally cached in the domain (due to cooperative 

caching) are accessed at smaller rates by routers in the 

domain and thus the effectiveness of the DICC caching 

strategy is less obvious.  

6  Conclusions & future work 

This work explores a scheme that enables a Named Data 

Networking (NDN) domain to make full use of its in-

network caches to enhance its performance, availability, 

and reliability. Due to the growing demand on content, 

information-centric networking featuring routing by 

name and universal in-network caching capability is 

proposed as an alternative of IP and NDN is a large 

effort that exemplifies the information-centric approach 

to networking. Currently, each NDN router 

independently determines what content to cache and is 

unaware of content cached in nearby routers and thus 

their caches are not utilized in an efficient way. Based 

on the observation, this paper proposes to have routers 

in a NDN domain share their cached data and 

coordinate to determine what objects to cache at each 

router, which is called in-network cooperative caching. 

The in-network cooperative caching problem is 

formulated into a constrained optimization problem and 

the Lagrangian relaxation and primal-dual 

decomposition method is then applied to decompose the 

optimization problem into object placement 

subproblems and object locating subproblems, each of 

which can be solved in a distributed manner at each 

router, such that the in-network cooperative caching is 

addressed in a distributed way. Our simulation results, 

although preliminary, suggest that our scheme can 

benefit users, ISPs as well as content servers, and the 

improvement can be as much as 88% compared to 

current NDN caching policy. And our next step is to 

develop more realistic models adapting to NDN, 

conduct comprehensive evaluations to quantify the 
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benefits, and efficiently implement our scheme in the 

realistic NDN environment, which is challenging.  
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