
Proceedings of IEEE CCIS2012

DISTRIBUTED IN-NETWORK COOPERATIVE CACHING

Xiaoyan Hu
1, 2

, Jian Gong
1, 2

1
School of Computer Science and Engineering, Southeast University, Nanjing 210096, China

2
Jiangsu provincial computer network technology key laboratory, Nanjing 210096, China

{xyhu,jgong}@njnet.edu.cn

Abstract: Named Data Networking (NDN) featuring in-

network caching capability is a large effort that

exemplifies information-centric approach to networking

by shifting emphasis from hosts to data so as to meet

growing demand on content. This work explores a

scheme that enables a NDN domain to make full use of

its in-network caches to enhance its performance,

availability, and reliability. Currently, each NDN router

independently determines what contents to cache and is

unaware of content cached in nearby routers and thus

their caches are not utilized in an efficient way. This

paper proposes to have routers in a NDN domain share

cached data and coordinate to make caching decisions

(which is dubbed in-network cooperative caching) and

formulates it into a constrained optimization problem.

The Lagrangian relaxation and primal-dual

decomposition method is applied to decompose the

optimization problem into object placement

subproblems and object locating subproblems, each of

which can be solved in a distributed manner at each

router, such that the in-network cooperative caching is

addressed in a distributed way. Our simulation results,

although preliminary, suggest that our scheme can

benefit users, Internet Service Providers (ISPs) as well

as content servers, and the improvement can be as much

as 88% compared to current NDN caching policy.

Keywords: In-network caching; Named data

networking; Cooperative caching; Lagrangian relaxation

1 Introduction

To meet the growing demand of content
1
, Information-

Centric Networking (ICN) [1-3] shifts emphasis from

hosts to data. Named data becomes addressable and

routable, and are self-identifying and self-authenticating

such that each data packet is potentially useful to many

consumers and thus intermediate routers can cache data

packets passing by (in-network caching) to serve future

requests without resorting to original data sources.

Named Data Networking (NDN) [1] is a large effort that

exemplifies the information-centric approach to

networking. Currently, each NDN router independently

determines what content to cache and is unaware of

content cached in nearby routers. And thus caches at

routers are not efficiently utilized. For example, there

are two neighboring routers RA and RB, and their caches

both can store only one object. Both routers have

received requests for two objects o1 and o2, and o1 is

1 We will use “content”, “data” and “object” interchangeably.

more frequently requested. Due to the constraint of

cache sizes and the unawareness of content cached at

the other, they both employ Greedy Local (GL) cache

strategy, i.e., choosing the more popular one, o1, to

cache, so that more requests can be locally served. In

such case, the future requests for o2 at both routers have

to be routed to remote content publisher(s). Instead, if

the two routers are aware of content cached by the other

and coordinate in content caching and sharing, they can

agree upon caching o1 and o2 separately so that all

future requests for both objects can be served by their

caches.

So how a NDN domain makes use of its in-network

caches would play an important role in enhancing its

performance, availability, and reliability. More

specifically, a domain can utilize the caching capacity in

its routers to cooperatively store inbound traffic so as to

improve its content delivery performance and reduce its

upstream bandwidth usage, which is dubbed in-network

cooperative caching here. This work treats it as an

optimization problem and applies Lagrangian relaxation

and primal-dual decomposition to decompose it into

subproblems so as to solve it in a distributed way. Our

preliminary results suggest the effectiveness of our

scheme and note that the concepts and algorithms

proposed in this paper could apply to almost any other

ICN [2, 3].

The rest of the paper is organized as follows. Section 2

presents the related work and Section 3 formulates the

in-network cooperative caching problem. In Section 4, a

conventional method, Lagrangian relaxation and primal-

dual decomposition is applied to conduct the

cooperative caching in a distributed way; and

implementation specific issues are discussed. In Section

5, simulations are conducted to demonstrate the

effectiveness of distributed in-network cooperative

caching. And finally Section 6 concludes our work and

closes with future work.

2 Related work

There has been a large body of literature on

collaborative caching [4-6]. Most consider an overlay

model where collaborative caching is treated as an

overlay service independent from the underlay networks,

and they have limitations to be applied in NDN directly.

This work either focuses on special-purpose

applications which put additional constraints on the

design (e.g., P2P system), or requires the system to be

constructed as a particular type of topology, e.g., a

Proceedings of IEEE CCIS2012

multicast tree. Extensive calculation is often required,

which limits their usage in global environment.

At the end of the 20th century, the caching architecture

called en-route [7, 8] was developed in which web

caches are associated with routing nodes in the network

and are referred to as en-route caches. In this respect,

these en-route caches are similar to caches built in NDN

routers and farsighted Wang et al. [9] proposed a

scheme to dynamically place objects in the caches on

the path from the server to the client in a coordinated

fashion to maximize cost saving. It is content servers

that make the caching decision and thus it is application

specific such that it requires special configuration at

applications. To the best of our knowledge, there are

only a few works on the in-network cooperative caching

problem. Ref. [10] formulated the cooperative in-

network caching problem into Mixed-Integer Linear

Programming problem, but the exact solution was not

discussed at all. Li et. al [11] proposed to have nearby

routers cooperate in caching to avoid these routers

storing the same content which improves cache hit ratio.

But the dissemination of content in this model considers

nothing about content popularity at routers which may

not maximize cost saving. Then Cho et al. [12]

proposed popularity-based and collaborative in-network

caching in which an upstream router recommends the

number of chunks to be cached at its downstream router

and the number exponentially increases as the request

count (the indicator of popularity) increases. But there

are still respectful redundancies and content servers are

involved in the recommendation.

Based on these works, we assume that content caching

is an inherent underlay capability and only routers are

involved in the cooperative caching procedure such that

existing and future applications would benefit from

caching without requiring specific configurations. We

consider an underlay, non-structured flat network model

where any router can be the caching parent of any other

router and propose a distributed cooperative caching

decision making process taking content popularity and

access costs between routers into account.

3 Problem Formulation

This section formulates the in-network cooperative

caching problem and maps it into an optimization

problem in a graph as follows.

Graph construction: the NDN router-level topology of

a domain is represented as an undirected graph G = (V,

E, d). V= {v1, v2,· · ·, vN} is the set of routers (|V | = N).

E is the set of edges (links). Function d: V ×V → R

defines the access cost between any two routers; the

access cost d(i, j) between routers ,i jv v V , i jv v ,

can be explained as the shortest hop count or the

minimum access delay if there is a path between them

(i.e., the two routers are connected), otherwise d(i, j) =

+∞; and ∀ vi ∈ V , d(i, i) = 0. The cache size of router

vi ∈ V is denoted by Ci; the set of objects to be stored is

represented by O = {o1, o2, · · ·, oK} (|O| = K); and the

demand for object ok ∈ O (with size s
k
) at router vi ∈ V

is denoted by
k

jr . We assume that the origin of these

objects is an upstream content server vN +1 outside the

domain and , (, 1)iv V d i N D    where D is

some positive constant. And note that ∀ vi , vj ∈V

which are connected, (,) (, 1)d i j d i N  i.e., the cost

of accessing objects from the cache of a router in the

domain is much smaller than that from the outside

origin (e.g., fetching data from the cache of another

router in the domain may reduce latency, load on

potentially expensive upstream links, and so forth).

Object placement: we use a series of binary variables
k

jx s to describe whether router vj caches object ok .

Object access/locating: while NDN naturally supports

multi-path routing, we assume each router chooses one

path for each object access. An object access relies on

the location of the object. More particular, upon receipt

of a request for object ok, router vi serves the request

from its local cache if ok is locally cached, otherwise

from some other router if the router caches ok, otherwise

(ok is not cached in the domain) from its data origin. We

use a series of binary variables k

ijy s to describe whether

router vi access object ok from router vj.

Objective: the objective of in-network cooperative

caching is to intelligently store these objects in the

routers of the domain and share them, i.e., determine

object placement k

jx s and object access k

ijy s, in such a

way that the caching gain is maximized, i.e.,

maximizing the reduction in total access cost for these

routers to fetch requested data as compared to that

without caching. And the objective is formulated as

follow:

 

 

 

Maximize (,) (1)

Subject to: 0,1 , , (2)

 x 0,1 , (3)

 1 ,

i k j

j

k k k

ij i

v V o O v V

k

ij i j k

k

j j k

k

ij i k

v V

y D d i j r s

y v V v V o O

v V o O

y v V o O

  





    

   

   

  

 (4)

 v V,v V, (5)

 v V (6)
k

k k

ij j i j k

k k

j j j

o O

y x o O

x s C


    

  

The constraint in Eq. (4) characterizes the fact that if

object ok is cached in the domain; if yes, it should be

fetched from one of those routers hosting it

(
1

jv V

k
yij



), otherwise (0

jv V

k
yij



) from the origin.

The constraint in Eq. (5) represents that router vi can

access object ok from router vj if and only if vj caches ok

(vi and vj can be the same router). And the constraint in

Eq. (6) guarantees that the content caching at each

router subjects to storage capacity constraint.

Proceedings of IEEE CCIS2012

4 Distributed in-network cooperative

caching

4.1 Distributed algorithm

The above in-network cooperative caching problem is

difficult to solve in a centralized way due to its

complexity. To achieve a distributed solution with

heterogeneous settings of input parameters, this work

applies a conventional method Lagrangian relaxation

and primal-dual decomposition [13]. We firstly rewrite

the constraint (5) to be as follow:

 , , (7)k k k k k k

ij j j jy r s x r s v V v V o O    

which is then incorporated into the objective unction in

Eq. (1) by associating a Lagrangian multiplier
k

ij .

Then the Lagrangian dual problem is represented as:

Minimize ()
 (8)

Subject to: 0

k

ij

k

ij

L 

 

And the objective function  k
L ij in the dual problem

is:

  

() max

 (9)
(,)

j k i

j k i

k k k k k

ij ij j j

v V o O v V

k k k k k

ij i ij j

v V o O v V

L r s x

y s D d i j r r

 



  

  



  

  

  

The Lagrangian dual problem can then be decomposed

into |V| object placement subproblems and |V| × |O|

object locating subproblems which both can be solved

in a distributed manner at each router.

i

k

ij

v V

η


 reflects

the interest of router
jv V to store a particular content

ko O and k

ij reflects the interest of router iv V

to access content ko O from router
jv V . At each

iteration t, router iv V first solves the following

object placement subproblem:

 Maximize ()

Subject to: {0,1} o O (10)

k i

k

k k k k

ij j j

o O v V

k

j k

k k

j j

o O

r s x

x

x s C


 



  



 



Objects can be divided into equal sized NDN Data

packets for convenience. This is the classical 0−1

knapsack problem and the optimal solution of this

object placement problem is:

1 for [1,),
() (11)

0 for [,| |].

k

j

k z
x t

k z O


 



In solution (11) the object set O is sorted in descending

order by the critical index

 
i

k k

ij jv V
η r

 and
1

min{ | }
h k

ji
z h s C


  . Router

vj is responsible to broadcast the |O| vector

 1
, , ,

k K

j j j j
X x x x , i.e., its temporary placement

decisions, to other routers in the network. Given the

placement decisions at all routers, each router vi is able

to solve the locating subproblem for individual object ok

such that:

Maximize (((,))

Subject to: y {0,1}

 (12)1

()

k k k k k

ij i ij j

k

ij j

k

ij

vj V

k k

ij j

y s D d i j r r

v V

y

y x t





 

  







We denote   k k k k

ij i ij jζ = D d i, j r η r  . Then the

optimal locating solution for object ok at router vi is as

follow:

1 for with max{ | , () 1},
() (13)

0 otherwise.

k k k

k j ij ij j j

ij

v v V x t
y t

    
 


In solution (13), router vi firstly finds the router set V
k
 =

{vj |vj ∈ V,   1k

jx t  } and then sorts routers of set V
k

in descending order by the critical index k

ijζ .

With the temporary local object placement and locating

decisions, each router vi is responsible to update values

of its k
ij s for the next iteration using sub-gradient

method [13, 14]:

(1) () ()(() ()) ((,)) (14)k k k k k k

ij ij j ij jt t t x t y t r s f d i j     

where θ(t) = 1/t is the step-size and f() is positively

correlated to d(i,j), the access cost between routers vi

and vj.. From the update rule of k

ij , it can be seen that

when    k k
x t = y tj ij

, either 1 or 0, k
ij does not

change in the t+1 iteration indicating that the placement

of object ok at router vj is useful to the access of object

ok at router vi and thus in the next iteration, the chance

of the decisions for object ok to change should be less.

Otherwise if () ()k k

j ijx t y t , then (1)k

ij t  decreases

(the decrease is proportional to the access cost between

routers vi and vj) such that in the next iteration, the

chance of object ok being cached at router vj is less as

not many routers rely on this copy. The above update

rule of k
ij ensures the quick convergence of the

proposed algorithm.

The above mentioned Distributed In-networking

Cooperative Caching (DICC) at router vi ∈ V is

summarized in Algorithm 1 and Figure 1 shows how

router vi interacts with others.

Figure 1 Router vi interacts with other routers

Router vi

Compute Xi, update Xi

Compute k

ijy , update k

ij Other routers

iX k

ij

Proceedings of IEEE CCIS2012

4.2 Complexity analysis and implementation

specific issues

In the DICC procedure, when a router vi determines its

object placement and object locating, it requires

information of the access costs between other routers in

the domain and itself, Lagrangian multiplier k
ij and

placement decision vector snapshot k

jx at other routers.

The access cost information at each router should be

relatively stable (updates only if there is network

dynamic) and takes space O(N). In each iteration,

routers make the object placement or object locating

decisions in parallel. For local object placement, router

vi computes the critical index for each object (taking

time and space O(K)), sorts objects to make caching

decisions (taking time O(KlgK)), broadcasts Xi and

receives Xjs from others (taking time O(2(N − 1)K) and

space O((N − 1)K)) which altogether consume time

O(K+KlgK+2(N−1)K) and space O(NK); for object

locating and Lagrangian multiplier k
ij update, the

computation of k

ijζ and the pick of the largest k

ijζ

(taking time and space O(NK)), the update of k

ij

(taking time and space O(NK)), the broadcast of k

ij and

the receipt of the Lagrangian multipliers at others

(taking time O(2NK(N−1)) and space O(NK(N−1)))

altogether take time O(2N
2
K) and space O(NK(N + 1)).

So at each router, the required space is upper bounded

by O(N+N K(N+2)); at each iteration, the time is upper

bounded by O(KlgK+(2N−1)K+2N
2
K).

Due to space limit, we only concisely mention the

implementation of information exchange process. In

DICC, while routers make decisions in parallel, when

exchanging information, routers should be arranged in

some order so that the information report (about object

placement decision snapshot or object locating decisions)

at these routers are sequentially processed. More

specifically, routers request information at other routers

one by one, i.e., each router firstly requests information

at the router with order 1, then that with order 2 and so

on (the name of the Interest packet (request) for

information at a specific router should include the ID of

the asked router, iteration # and information type, either

object placement decision snapshot or object locating

decisions). In this way, the Interests for the information

at the same router are likely to be aggregated in

intermediate routers [1] or be served with copies in

content stores of intermediate routers such that the

asked router is less involved in the information

exchange. Note that any Xi can be succinctly

represented as a space efficient (Delta) Bloom Filter [15,
16] to reduce communication cost.

5 Performance evaluation

In this section, we evaluate the DICC through

simulations. We conduct simulations on two practical

ISP topologies, the topologies of AS 209 and AS 7018

from Ref. [17], and the basic information of the two

topologies are summarized in Table I (we set D, the

delay for any PoP in the two ASes to access an object

from original data sources, to be 130ms). The PoP-level

topologies are different from the real router-level

topologies; however, they still demonstrate the scope

and the effectiveness of DICC. In our simulations, we

treat PoP nodes in the underlying network as routers

with both routing and caching capability, and have them

make object placement and locating decisions using

DICC strategy.

The numbers of objects that may be requested by

routers are 1000 and 10000 in AS 209 and in AS 7018

respectively. We assume that routers in an AS are

provisioned with caches of equal size and their demands

on objects follow Zipf distribution with shape parameter

α (Zipf preference), i.e. at router vi, the object with rank

k is requested with rate
| |

1
/

Ok

i l
r k l

  


  .

We evaluate the effectiveness of DICC by comparing

average access delay (the average delay for a router to

fetch an object) and average hit ratio (the percentage of

content served by caches of routers in a domain) under

DICC with that if routers independently manage their

own caches (i.e., under GL) when cache size and Zipf

preference α are configured with different values. We

Algorithm 1: Distributed In-network Cooperative

Caching

Input:: (,), , ,k k

i id i j s r C

Output: * *,k k

i ijx y

1) Initiate t=0 and coefficient (0)k

ij to some

positive value, , ,i j kv v V o O  

2) Iterate until coefficient k

ij converge to *k

ij :

(a) Calculate ()k

ix t according to equation (11),

ko O 

(b) Broadcast placement decision vector ()iX t

snapshot from other routers

(c) Receive placement decision vectors ()jX t

snapshot from other routers, and
jv V  and

v vj i

(d) Calculate ()k

ijy t according to equation

(13),
jv V  ,

ko O

 (e) Update coefficient k

ij according to

equation (14) and broadcast them to others,

,j kv V o O  

3) Obtain the near optimal solution as
* ()k k

i ix x t and * ()k k

ij ijy y t

Proceedings of IEEE CCIS2012

summarize the results and show them in Figure 2 and

Figure 3. Figure 2 plots how the average access delay

and average hit ratio vary with the change of cache size

and Zipf preference; and due to space limit, we only

report the results in AS 7018 (trends are consistent with

results in AS 209). Figure 3 shows the average access

delay and average hit ratio over all simulations

(different simulations are with different cache sizes and

Zipf preferences) in the two ASes.

(a) Delay

(b) Hit ratio

Figure 2 Simulation results for AS 7018

(a) Delay

(b) Hit ratio

Figure 3 Simulation results

From Figure 3, it can be seen that in AS 209, DICC

reduces average access delay from 51ms to 6ms (about

88% reduction) and improves average hit ratio from

0.61 to 0.98 (about 60% improvement); and in AS 7018,

DICC reduces average access delay from 65ms to 21ms

(about 68% reduction) and improves average hit ratio

from 0.50 to 0.86 (about 72% improvement). The

results demonstrate that with DICC, NDN domains can

actually further improve its packet delivery performance

(i.e., smaller delay and higher availability) and reduce

its upstream bandwidth usage. Meanwhile, due to higher

hit ratio, more request traffics are served within

domains and thus the traffics in backbone network and

the workload of content servers are reduced.

Figure 2 illustrates that DICC is especially effective

when Zipf preference α is small. For example, when α =

0.7 (a typical Zipf preference in Web traffic popularity

[18]) and cache sizes are set to as large as 100, DICC

reduces average access delay from 103ms to 14ms and

improves average hit ratio from 0.21 to 0.94. But when

Zipf preference increases, the demands on objects of

routers become more heavy-tailed such that the objects

additionally cached in the domain (due to cooperative

caching) are accessed at smaller rates by routers in the

domain and thus the effectiveness of the DICC caching

strategy is less obvious.

6 Conclusions & future work

This work explores a scheme that enables a Named Data

Networking (NDN) domain to make full use of its in-

network caches to enhance its performance, availability,

and reliability. Due to the growing demand on content,

information-centric networking featuring routing by

name and universal in-network caching capability is

proposed as an alternative of IP and NDN is a large

effort that exemplifies the information-centric approach

to networking. Currently, each NDN router

independently determines what content to cache and is

unaware of content cached in nearby routers and thus

their caches are not utilized in an efficient way. Based

on the observation, this paper proposes to have routers

in a NDN domain share their cached data and

coordinate to determine what objects to cache at each

router, which is called in-network cooperative caching.

The in-network cooperative caching problem is

formulated into a constrained optimization problem and

the Lagrangian relaxation and primal-dual

decomposition method is then applied to decompose the

optimization problem into object placement

subproblems and object locating subproblems, each of

which can be solved in a distributed manner at each

router, such that the in-network cooperative caching is

addressed in a distributed way. Our simulation results,

although preliminary, suggest that our scheme can

benefit users, ISPs as well as content servers, and the

improvement can be as much as 88% compared to

current NDN caching policy. And our next step is to

develop more realistic models adapting to NDN,

conduct comprehensive evaluations to quantify the

Proceedings of IEEE CCIS2012

benefits, and efficiently implement our scheme in the

realistic NDN environment, which is challenging.

Acknowledgements

We are grateful to anonymous reviewers of the 2nd IEEE

CCIS2012 International Workshop on Future Internet

Technologies and look forward to getting feedbacks from you

all. This work was sponsored by the National Grand

Fundamental Research 973 program of China under Grant

No.2009CB320505 and the National Nature Science

Foundation of China under Grant No. 60973123.

References

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,

N. H. Briggs, and R. Braynard, “Networking named

content,” in CoNEXT’, 2009.

[2] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.

H. Kim, S. Shenker, and I. Stoica, “A data-oriented (and

beyond) network architecture,” SIGCOMM Comput.

Commun.Rev.,vol.37, pp.181–192, 2007.

[3] M. Gritter and D. R. Cheriton, “An architecture for

content routing support in the internet,” in Proceedings

of the 3rd conference on USENIX Symposium on

Internet Technologies and Systems - Volume 3,

USITS’01, (Berkeley, CA, USA), pp. 4–4, USENIX

Association, 2001

[4] J. Ni and D. H. K. Tsang, “Large-Scale Cooperative

Caching and Application-Level Multicast in Multimedia

Content Delivery Networks,” IEEE Communications

Magazine, vol. 43, pp. 98–105, May 2005.

[5] P. Sarkar and J. H. Hartman, “Hint-based cooperative

caching,” ACM Trans. Comput. Syst., vol. 18, pp. 387–

419, Nov. 2000.

[6] H. Che, Z.Wang, and Y. Tung, “Analysis and design of

hierarchical web caching systems,” in INFOCOM,

pp.1416–1424, 2001.

[7] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura, “Self-

organizing wide-area network caches,” in Proceedings of

IEEE INFOCOM’98, (San Francisco, CA, USA), pp.

600–608, IEEE Press, March 1998.

[8] P. Rodriguez and S. Sibal, “Spread: scalable platform for

reliable and efficient automated distribution,” Comput.

Netw., vol. 33, pp. 33–49, June 2000.

[9] X. Tang and S. T. Chanson, “Coordinated en-route web

caching,” IEEE Trans. Comput., vol. 51, pp. 595–607,

June 2002.

[10] S. Wang, J. Bi, J. Wu, Z. Li, W. Zhang, and X. Yang,

“Could in-network caching benefit information-centric

networking?,” in Proceedings of the 7th Asian Internet

Engineering Conference, AINTEC ’11, (New York, NY,

USA), pp. 112–115, ACM, 2011.

[11] Z. Li and G. Simon, “Time-shifted tv in content centric

networks: The case for cooperative in-network

caching.,” in ICC, pp. 1–6, IEEE, 2011.

[12] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S.

Pack, “Wave: Popularity-based and collaborative in-

network caching for content- oriented networks,” in

Proceedings of IEEE INFOCOM’12 Workshop on

Emerging Design Choices in Name-Oriented

Networking, NOMEN’12, (Orlando, Florida, USA),

IEEE Press, March 2012.

[13] D. P. Palomar and M. Chiang, “A tutorial on

decomposition methods for network utility

maximization,” Selected Areas in Communications,

IEEE Journal on, vol. 24, pp. 1439–1451, Aug. 2006.

[14] D. P. Bertsekas, A. Nedi , and A. E. Ozdaglar, Convex

Analysis and Optimization. Athena Scientific, 2003.

[15] B. H. Bloom, “Space/time trade-offs in hash coding with

allowable errors,” Commun. ACM, vol. 13, pp. 422–426,

July 1970.

[16] A. Broder and M. Mitzenmacher, “Network applications

of bloom filters: A survey,” Internet Mathematics, vol. 1,

no. 4, 2005.

[17] N. Spring, R. Mahajan, and D. Wetherall, “Measuring

isp topologies with rocketfuel,” in Proceedings of the

2002 conference on Applications, technologies,

architectures, and protocols for computer

communications, SIGCOMM ’02, (New York, NY,

USA), pp. 133–145, ACM, 2002.

[18] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,

“Web caching and zipf-like distributions: Evidence and

implications,” in INFOCOM (1), pp. 126–134, 1999 .

