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Traffic measurement and monitoring are an important component of network QoS man-
agement and traffic engineering. With high speed Internet links, efficient and effective
packet sampling techniques for traffic measurement are not only desirable, but increas-
ingly becoming a necessity. Packet sampling has become an attractive and scalable means
to measure flow data on high speed links. Passive traffic measurement increasingly
employs sampling at the packet level and makes inferences from sampled network traffic.
However, it meets difficulty in estimating the original flow distribution. To circumvent the
problem, we propose and analyze a double sampling technique for flow measurement. In
particular, we rewrite the expectation maximization (EM) algorithm that estimates flow
distribution for double sampling. Using real network traffic traces, we show that the pro-
posed double sampling technique indeed produces the desired accuracy in estimating the

Statistic inference flow distribution.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Packet collection tools have been developed since the
inception of packet switched networks as a means to de-
bug protocol stacks or network interfaces. There are in fact
many ways of collecting packets on a link, based either on
a software or hardware solution, for both online and offline
analysis. For instance one can use hardware equipment
such as a line tester or a protocol analyser to generate real
time counts of link layer faults or packet arrivals. One can
also use software tools such as tcpdump to investigate IP
packets on a LAN. These measurement techniques are
non-intrusive, in the sense that they do not modify the
traffic, and are often referred to as passive measurements.
They differ from active measurement techniques where
artificial traffic is injected in the network, for instance to
estimate link bandwidth.
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1.1. Related work

Passive traffic measurement increasingly employs sam-
pling at the packet level to control the consumption of re-
sources in measurement. Many high end routers form flow
statistics from only a sampled substream of packets in or-
der to limit the consumption of memory and processing
cycles involved in flow cache lookups.

In 1993, Claffy et al. [1] studied systematic, stratified
random and simple random sampling method by packet
or time. Systematic sampling involves deterministically
selecting one in every k packets of the data set. Stratified
random sampling is similar to systematic sampling, except
that rather than selecting the first packet from each bucket,
a packet is selected randomly from each bucket. Simple
random sampling uniformly selects n packets from the to-
tal population at random. They compared above three
methods on 1/T time-driven and 1/N packet-driven mech-
anisms and showed that time-driven technique performs
worse than packet-driven one. The method of sampling
by packet’s content was discussed in [2]. Cozzani and
Giordano [2] showed how to manage the trade-off
between the sampling rate and attained estimation accu-
racy, representing a theoretical/quantitative method
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usable by network operators to design control instru-
mentation.

The packet sampling working group (PSAMP), which
was founded by IETF in 2003, is chartered to define a stan-
dard set of capabilities for network elements to sample sub-
sets of packets by statistical and other methods [3]. The
method and application of Trajectory Sampling was consid-
ered in [4,5]. The key idea of Trajectory Sampling is to sam-
ple packets based on a hash function computed over the
packet content. Using the same hash function will yield
the same sample set of packets in the entire domain, and
enables us to reconstruct packet trajectories. Furthermore,
sampling techniques have been employed in network prod-
ucts such as Cisco’s Netflow [6] and NetranMet [7].

In fact, two different sampling rules are included in
the above work: packet sampling, which acts directly on
individual packets and is ignorant of flows, and flow sam-
pling, where entire flows of packets are retained or dis-
carded at once. Packet sampling without per-packet
processing can be easily implemented. Hohn and Veitch
in [8] discussed the inaccuracy of estimating flow distri-
bution from sampled traffic, when the sampling is per-
formed at the packet level. For flow sampling, its
disadvantage is that all packets must be processed before
deciding to be retained or discarded. This is a challenge
on high speed links.

In order to overcome aforementioned shortcomings of
packet sampling and flow sampling, we propose a novel
sampling method, double sampling, that combines packet
sampling and flow sampling. Double sampling consists of
packet sampling and flow sampling:

1. First, employ packet sampling to obtain a substream.
2. Then, deploy flow sampling to select a small number of
packets from the substream.

1.2. Contribution and outline

This paper presents a novel sampling method, double
sampling, that overcomes the shortcomings of packet sam-
pling alone and flow sampling alone. This method is not
only simple to implement but also scalable for high speed
links. This method displays its advantage in estimating the
distribution of flow length, i.e., the accuracy of flow distri-
bution measurement is dramatically improved.

The rest of this paper is organized as follows. In the next
section, we review some elementary concepts on flow and
sampling. In Section 3 we describe double sampling in de-
tail. In Section 4, we give methods for estimating the
length and total bytes of original flows. Then we analyze
the estimation methods. Finally, we give the EM algorithm
that estimates flow distributions from sampled flow statis-
tics by double sampling. In Section 5 we make some exper-
iments to observe estimation accuracy. We conclude in
Section 6.

2. Some elementary concepts

This section considers packet sampling alone. Within
the functional requirement of sampling packets at a given

rate, a number of different implementations are possible.
Implementations include independent sampling of packets
with probability 1/N, and periodic selection of every Nth
packet from the full packet stream. In both cases we will
call N the sampling period, i.e., the reciprocal of the aver-
age sampling rate. An IP flow is a set of packets, that are
observed in the network within some time period, and that
share some common property known as its key. The funda-
mental example is that of so-called raw flows: a set of
packets observed at a given network element, whose key
is the set of values of those IP header fields that are invari-
ant along a packet’s path. Examples are the raw flows ob-
served at a router, where the flow key distinguishes
individual source and destination IP address, and TCP/
UDP port numbers. There are at least a few definitions
for the term flow depending on the context of research.
In this study, we employ the one adopted in [9] which
stems from the packet train model by Jain and Routhier
[10].

Definition 1. A flow is defined as a stream of packets
subject to flow specification and timeout.

In most cases, we call flow specification as flow identi-
fier. When a packet arrives, the specific rules of flow spec-
ification determine which active flow this packet belongs
to, or if no active flow is found that matches the descrip-
tion of this packet, a new flow is created. In this paper,
the flow interpacket timeout is 64 s. A general flow is a
stream of packets subject to timeout and having the same
source and destination IP addresses, same source and des-
tination port numbers (not considering protocol). In this
paper, we will use the term original flow to describe the
above flow. A flow length is the number of packets in the
flow. The frequency of flows with k packets is the number
of flows that contain k packets.

Definition 2. A sampled flow is defined as a stream of
packets that are sampled at probability p = 1/N from an
original flow.

3. Double sampling

In this section, we will discuss the methodology of dou-
ble sampling. Double sampling consists of packet sampling
and flow sampling:

Step 1 Independent and identically distributed (i.i.d.)
packet sampling consists of, for each packet in an
independent manner, retaining the packet with
probability 1/n or discarding it with probability
(n—1)/n.

Step 2 Independent and identically distributed (i.i.d.) flow
sampling consists of, for each flow whose packet is
selected in Step 1 in an independent manner,
retaining the flow with probability 1/m or discard-
ing it with probability (m — 1)/m.

There are several ways to implement Step 1. In probabi-
listic sampling, the router makes a pseudorandom decision
whether to sample each packet. In implementations, the
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decision could, for example, be governed by a pseudoran-
dom number generator with well-known properties (see
e.g. [11]). Periodic (or deterministic) sampling can be used
too, e.g., every nth packet is selected.

We use a hash function over flow identifier (the part of
packet’s header) to implement Step 2. The same hash func-
tion is used throughout measurement interval, so that we
are ensured that all packets of a flow are either sampled,
or discarded. The choice of an appropriate hash function
will obviously be crucial to ensure that this subset is not
statistically biased in any way. For this, the sampling pro-
cess, although it is a deterministic function of the packet’s
header, has to resemble a random sampling process. We
can choose a hash function that maps each item in the uni-
verse of flows to a random number uniform over the range
{1,2,...,m}. In practice, reasonable hash functions appear
to behave adequately, e.g. [12]. A packet is sampled if its
hash value is equal to the specific integer, e.g., 1. Because
the hash function is perfectly random, flow sampling rate
is 1/m, i.e., a flow in every m flows is sampled.

For double sampling, we denote sampling period N by
n = m, written as N = n « m. For example, if n =5,m = 10,
then N is written as 5 * 10.

4. Estimation methodology
4.1. Estimation of the length and total bytes of flow

Denote observed flows by fi(k =1,2,...) and the total
number of packets arrived of all flows by N within the
measurement interval. For a flow f, let N, be the number
of packets belonging to it; and denote the jth packet of
the flow by p,;(j=1,2,...,N) and its packet size by x,;.
Similarly, denote the number of sampled packets belong-
ing to flow fi by ny, and the Ith packet in the sampled pack-
ets by su(l=1,2,...,n), its packet size by Xj. In the
sequence of arrival, we arrange all packets as
pi(i=1,2,...,Notar), Which corresponds to some p,; un-
iquely, i.e., exists a map: i(k,j)—i.

If n, > 0, the total bytes of flow f; is estimated as

M
Xe=n> Xu. 1)
=1

Eq. (1) shows how to estimate the total bytes of a sampled
flow, i.e., at least a packet is sampled.

If n, > 0, the total number of packets in flow f is esti-
mated as

Ny = nng. (2)

Eq. (2) shows how to estimate the total number of packets
in a sampled flow, i.e., at least a packet is sampled.
The total bytes of all flows in the whole measurement
interval x is estimated as
g=m 3 % 3)
ke{k|n,>0}
Eq. (3) shows how to estimate the total bytes of all flows.

The total packet number of all flows in the whole mea-
surement interval Ny iS estimated as

Ntotal =m Z Nk~ (4)
ke{k|n,>0}

Eq. (4) shows how to estimate the total number of packets
in all flows.

4.2. Estimation analysis

Let w;(i=1,...,N) be random variables taking the va-
lue 1 (indicating that the packet was sampled) with prob-
ability 1/n and O (indicating that the packet was not
sampled) with probability 1 — 1/n. For independent packet
sampling, the w; are independent.

Similarly, let u,(k = 1,2, ...) be random variables taking
the value 1 (indicating that the flow was sampled) with
probability 1/m and O (indicating that the flow was not
sampled) with probability 1 — 1/m. For independent flow
sampling, the u; are independent.

Lemma 1. The mean and variance of random variable w; are
E(w;) = 1/n and Var(w;) = -1

Lemma 2. The mean and variance of random u, are
E(uy) = 1/m and Var(uy) = ™=1, respectively.

Lemma 3. The random variables w;,u, are mutually
independent.

Lemma 4. E(w;uy) = -1 Var(wju) = 2o=1,

mn ) (mn)

Theorem 1. E(Ni|n; > 0) = Ny, Var(Ny|n, > 0) = (n — 1)N

Proof. We can write the random variable Nk_nnk =
nzj I WikjUk. By ng >0, we have u,=1. Hence Nk=
nZHW, kj» conditional on n, > 0. Therefore, E(N,<|n,< >
0) =n>"M E(Wigj)) = Ny, Var(Ny|ny > 0) = n25M Var(wigj)) =
(n—1)N,. O

Theorem 2. E(x|n;, > 0)

N
ij] Xij'

= Zj.\’z"lx,g,Var(kk\nk >0)=n-1)

Proof. We write the random variable xk_nzl"X,dz
nzj  WijUkXij. By ng >0, we have u, =1. Hence X
nzjzlw, kjXkj, conditional on n, > 0. Therefore, E(X|ng >
0) = N EWig )Xy = Yo Xig, Var(X|me > 0) = n?3
Var(w,-(kj))xﬁj = (n 1)2 1x,q |

Theorem 3. E(Ntotal) = Ntotal7var(Ntotal) = (mn — 1)Notar-

Proof. We write the random variable
Nk

Z Nk = mnznk mnz ZWI k.j) Ug.

ke{k|n,>0} k=1 k=1 j=

Ntotal =m

By Lemma 4, we have

Ntotal Z Nk Ntotal )

N

= (mn)? Z Z Var (Wi jUx)

k=1 j=1
= (mn - 1)Nt0tal- O

Var(Nioal)
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Theorem 4. E(X) = x,Var(x) = (mn — 1)3_, > x5
Proof. We write the random variable

ny Ny
X=m Z Xk:mnz ZXkIZng ZWj(kJ)ukX,q.
k 1 k j=1

ke{k|n,>0}

By Lemma 4, we have
N
ER) =) x5=x,
k  j=1
moreover,

Var(x) = (mn—1)> "> " xg.
k Jj

These theorems show the estimators are unbiased. [

4.3. Estimation of flow length distributions

Letg={g;:j=1,2,...,n}, where g; is the frequency of
sampled flows with j packets, denote a set of sampled flow
length frequencies after double sampling, and let
f={fi:i=1,2,...,n,...}, where f; is the frequency of ori-
ginal flows with i packets, denote a set of original flow
length frequencies. Our objective is inferring {f;} from {g;}.

Firstly, we make recovery of flow sampling as follows:

g=m=xg, j=12,...n ()

We regard g ={g;:j=1,2,...,n} as sampled flow
length frequencies with packet sampling rate 1/n from ori-
ginal flows. In practice, measured sampled flow length dis-
tributions are smoother, so some effective manner of
smoothing would be required for long flows. According
to Eq. (5), the inferred distribution of flow lengths would
be concentrated on length j. However, we know that flow
length distributions have the property of being heavy-
tailed, i.e., the number of long flows is very few. For exam-
ple, for flow sampling rate 1/m = 1/100, if we only sample
a flow of length j= 10,000 in length interval [9900,
11,000], i.e., gip000=1, and g;=0, for j=9900,...,
11,000, we should not think that there are 100 flows of
length 10,000, rather than think that there are 100 flows
in length interval [9900, 11,000]. So we estimate as 100
flows of different lengths, not 100 flows of the same length.
After they are smoothed, we obtain

g=1{g,j=12,...} (6)
Under independent sampling of packets with probabil-

ity p = 1/n, the number of packets j sampled from an ori-
ginal flow of i packets follows the binomial distribution
B, (i,j) = (]I pi(1-p)7. Let y=3,g;, and ¢; denote the
frequencies of original flows of length i conditional on at
least one of its packets being selected, and }";¢; = 1. Our
aim is to estimate ¢ = {¢;} from the frequencies {g;}. We
now derive an expression for log-likelihood L(¢) to obtain
gi given ¢. Here, ¢;j = By(i,j)/(1 — By(i,0)) is the probability
that packets are sampled from a flow of length i, condi-
tional on j > 1, i.e., that the flow is sampled. For any j, its
probability function is (Zizjgbicij)gi: Hence we obtain the
likelihood function [T;.; (> ;.;¢ics)®. Therefore the loga-
rithm of likelihood function is

L(¢) = glog)  dicy. (7)
j=1 i>j
Now we adopt the EM algorithm in [13]; the standard form
is as follows.
Starting with an initial value ¢©, for example,
¢© = {&}, the algorithm finds sup{L(¢) : ¢ € A}, by iterat-
ing between the following two steps (k=0,1,...):

E step Let f; denote the frequencies of original flows of
length i from which j packets are sampled. Thus
g = >y, while f; = 3,f; is the frequency of origi-
nal flows of length i at least one of whose packets
is sampled. Form the complete data likelihood
function assuming known fj;

Le(d) = > filog dcy. (8)
i>j>1
Form the expectation Q(¢, $*') of L.(¢) conditional on the
known frequencies gj, according to a distribution ¢*:

Qe ¢") = Y Ewlfylg]log ¢icy. 9)
i=j>1
Mstep Define ¢**) =argmax, ,Q(¢,¢"). From the
Legendre equations in the maximization of
Q(¢,¢™) we have ¢! = M Through direct
computation of the above conditional expectation
we obtain

k)~ 5
k1) 1 Pi Ci&j
V=2 Y e (10)
VSR 2S¢ Gy
I=j
Iterate steps E and M until some termination criterion is
satisfied. Let ¢ denote the termination point. We write
our estimation of original flows as f; = ¢i7/(1 — B,(i, 0)).

5. Evaluation

In this section we apply the estimators derived in the
previous section to experimental traffic traces. We infer
the flow statistics from the sampled versions of the traces,
and we compare them with the unsampled flow statistics
of the original traces.

For flow estimating, we adopt estimated relative differ-
ence (ERD) as our evaluation metric. Suppose that A is the
actual number and E is the number estimated. Then ERD is
defined as follows: ERD = 42E, For flow length distribution
estimating, we adopt the weighted mean relative differ-
ence (WMRD) from [13] as our evaluation metric. Suppose
the number of original flows of length i is n; and our esti-
mation of this number is fi;. The value of WMRD is given

by WMRD — 2=
> ()

5.1. Data considerations

We use 20 traces in our experiments. The first 10 traces,
each of which contains packets during 1 min period, is
from the first publicly available 10 Gigabit Internet back-
bone packet header trace from NLANR: Abilence III data
set [14]. It was collected on June 1st, 2004 at the 0C192c
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Packet-over-SONET link from Internet2’s Indianapolis
(IPLS) Abilene router node towards Kansas City (KSCY).
The other 10 Traces, either of which contains packets dur-
ing 1 min period too, were collected at Jiangsu provincial
network border of China Education and Research Network

Relative difference.

-1.5 1 1 1 1 1
0 1000 2000 3000 4000 5000

Flow length (number of packets)

Fig. 1. Estimated relative differences of sampled flows in double sam-
pling period 10 = 10 for a trace.
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Fig. 2. Estimated relative differences of total packet numbers in different
sampling period for 20 traces.

(CERNET) in disjoint time interval on April 17, 2004. The
backbone capacity is 1000 Mbps; mean traffic per day is
587 Mbps. For each trace, we make double sampling at
double sampling period nx+m=2%22x52x10,
5%2,5%5,5%10,10% 2,10 5,10 = 10, respectively.

5.2. Estimation comparison

Firstly, the estimated relative differences of packet num-
bers of sampled flows are computed and shown in Fig. 1.
Fig. 1 reflects the estimated relative differences of packer
numbers of sampled flows for some trace. We can see that
the points are symmetrically distributed around coordi-
nate y. Thus, the estimation is unbiased in accordance with
Theorem 1. As shown in Fig. 2, the estimation of total packet
number conforms to the property of being unbiased showed
by Theorem 3. For space limit, we omitted the correspond-
ing traffic bytes results which are similar to Figs. 1 or 2.

We then compare double sampling with packet sam-
pling alone in estimating flow distributions. For same trace
in same sampling period (N = n*m,nm), we run double
sampling and packet sampling respectively. Then we use
EM algorithm to estimate flow distributions from sampled
statistics, respectively. Comparing with the actual flow dis-
tributions, we find that the estimated results by double
sampling are always more accurate than those by packet
sampling. This conforms to the conclusion that inversion
based on flow sampling performs well [8]. Fig. 3 compares
the two estimators of Jiangsu trace derived by double sam-
pling and packet sampling at sampling period
N =10x10,100. Observe that estimated result by packet
sampling is much worse. Table 1 shows the flow length
distribution estimation of double sampling is much more
accurate that of packet sampling alone.

5.3. Estimation accuracy and scalability

In this subsection, we consider how to choose n and m
for fixed N = n = m. In fact, this is the choice on the estima-
tion accuracy and on scalability with link speed. For fixed
N, n is decreasing as m increases, and vice versa. When

1. E+06

1.E405 |

——actual frequencies

1. E+0d4

»— estimation for double sampling

estimation for packet sampling —

Frequency
5]
&
wr

1. E+02

1. E+01

1. B+00 :
1. B+00 1.E+01

1.E+02 1. E+03 LLE+04

Flow length (number of packets)

Fig. 3. Comparison of double sampling and packet sampling alone at sampling period N = 10 « 10, 100 for Jiangsu trace.
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Table 1
WMRD of flow length distribution estimation for double sampling and
packet sampling alone

Trace Sampling period  WMRD of double ~ WMRD of packet
nxm,N sampling sampling alone
Abilence Il 224 4% 7%
2+5,10 5% 18%
5%2,10 9% 18%
5x5,25 11% 22%
5%10, 50 13% 26%
1010, 100 20% 37%
Jiangsu 22,4 5% 12%
2+5,10 8% 23%
5%2,10 10% 23%
5%5,25 11% 28%
5+10, 50 13% 34%
10+10, 100 19% 39%

n =1, double sampling becomes flow sampling alone. In
this case, scalability with link speed is worst because each
packet is processed, but the estimation of flow length dis-
tributions is best. On the contrary, double sampling be-
comes packet sampling alone when m = 1. The scalability
is best, but the estimation accuracy is worst. Therefore,
choosing proper m and n is the trade-off between the accu-
racy and the scalability in practical application. Double
sampling is very flexible in making appropriate trade-offs
between the accuracy and the scalability.

6. Conclusions

Double sampling has been proposed to overcome the
shortcomings of packet sampling alone and flow sampling
alone. This method is not only simple to implement but
also scalable for high speed links. Theoretical analysis
demonstrates that the estimation of sampled flow is unbi-
ased. In experiments, the advantage of double sampling is
shown in estimating the distribution of flow length; i.e.,
the accuracy of flow distribution measurement is dramat-
ically improved.

References

[1] K.C. Claffy, G.C. Polyzos, H.-W. Braun, Application of sampling
methodologies to network traffic characterization, ACM SIGCOMM
(September) (1993) 194-203.

[2] I. Cozzani, S. Giordano, A passive test and measurement system:
traffic sampling for QoS evaluation, in: Global Telecommunications
Conference, 1998. GLOBECOM 1998. The Bridge to Global
Integration, vol. 2, IEEE, pp. 1236-1241.

[3] Packet Sampling (psamp). <http://www.ietf.org/html.charters/
psamp-charter.html>, 2005.02.02.

[4] N.G. Duffield, M. Grossglauser, Trajectory sampling for direct traffic
observation, IEEE/ACM Trans. Network. 9 (3) (2001) 280-292.

[5] N.G. Duffield, M. Grossglauser, Trajectory sampling with unreliable
reporting, IEEE Infocom 2004, March 2004.

[6] Sampled Cisco. <http://www.cisco.com/en/US/products/sw/iosswrel/
ps1829/products_feature_guide09186a0080081201.html>, 2002.12.8.

[7] NeTraMet Version 4.4. <http://www?2.auckland.ac.nz/net/Accounting/
ntm.Release.note.html>, 2002.12.

[8] Nicolas Hohn, Darryl Veitch, Inverting sampled traffic, in: Internet
Measurement Conference 2003. October 27-29, Miami Beach,
Florida, USA. pp. 222-233.

[9] K.C. Claffy, HW. Braun, G.C. Polyzos, A parameterizable methodology
for Internet traffic flow profiling, IEEE JSAC 13 (1995) 1481-1494.

[10] R. Jain, S.A. Routhier, Packet trains-measurements and a new model
for computer network traffic, IEEE JSAC 4 (1986) 986-995.

[11] P. L’Ecuyer, Efficient and portable combined random number
generators, Communications of the ACM, 31 (1988) 742-749 and
774.

[12] M.V. Ramakrishna, Practical performance of Bloom Filters and
parallel free-text searching, Communications of the ACM 32 (10)
(1989) 1237-1239.

[13] N.G. Duffield, C. Lund, M. Thorup, Estimating flow distributions from
sampled flow statistics, ACM SIGCOMM (2003) 325-336.

[14] NLANR: Abilene-III data set. <hppt://pma.nlanr.net/Special/ipls3.
html>.

Weijiang Liu, male, born in 1969, received the
Ph.D., degree in computation mathematics
from Jilin University, Changchun, China, in
1998. From June, 2004 to June, 2006, he was a
postdoctoral fellow of Post Doctoral Station
for Computer Science and Technology,
Southeast University, China. He is currently a
professor in school of Computer Science and
Technology, Dalian Maritime University,
China. He has published more than 40 papers
and his current research interests include
network  measurement and  network
performance.

Jian Gong, male, born in 1957, received the
B.S. degree in computer science from Nanjing
University, and the M.S. and the Ph.D., degrees
in computer science from Southeast Univer-
sity, China. He is a professor in School of
Computer Science and Engineering, Southeast
University. He has published more than 100
papers and his current research interests
include network measurement, network per-
formance and network security.



