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Abstract In recent years, traffic classification based on machine learning shows a high accuracy.
Nevertheless, machine learning-based traffic classification heavily depends on the environment
where the samples are trained. In practice, although a classifier can be accurately trained at a given
network environment, its accuracy will see a great decline when it faces to classify traffic from
varying network condition in practice. Due to dynamic changes of traffic statistics and distribution,
the machine learning-based classifiers should be updated periodically in order to optimize the
performance. This issue is unavoidable for machine learning-based traffic classification. The present
solutions lack explicit recommendations on when a classifier should be updated and how to
effectively update the classifier. These result in several shortcomings: (1) Updating a traditional
traffic classifier is time consuming. It is inherent to how often a classifier should be updated or
when a new classifier will be needed. (2) Updating only a new classifier on new traffic leads to
some learned knowledge lost. It further affects the performance when updating a classifier on a
large dataset that combines all collected data. (3) Traffic statistics and distribution from varying
network condition are dynamically changed. Thus, it is hard to obtain stable feature subset to

build robust classifier, Therefore, building an adaptive classifier to changing network condition is
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a huge challenge. In this paper, we develop an adaptive traffic classification using entropy-based
detection and incremental ensemble learning, assisted with embedded feature selection. In order
to update the classifier timely and effectively, the entropy-based detection utilizes sliding window
technique to measure the statistical difference between the previous and current traffic samples by
counting and comparing all instances with respect to their feature stream membership. Additionally,
we discretize the range of feature values to a fixed number of bins to take the approximate value
distribution into account. Moreover, incremental ensemble learning schema retains previous
trained classifiers, and introduces the classifier retrained on current traffic and removes the classifier
with performance degradation. Furthermore, several feature selectors are integrated to obtain
feature subsets with robust generalization. The comprehensive performance evaluation conducted
on two real-world network traffic data sets shows that our approach can effectively detect concept
drift in changing network condition and update the classifier with high accuracy and generalization
ability. The major contributions of this work are summarized as follows: first, this paper presents
an adaptive traffic classification system based on concept drift detection. Information entropy is
used to detect concept drift based on the entropy change of feature attributes. The information
entropy-based detection method does not require class information of flows. Second, the classifiers
are updated according to the result of concept drift detection, rather than regularly updated at a
given period. Third, the method uses ensemble learning strategy to introduce classifier built on
new samples, and eliminates classifiers with performance degradation in order to optimize the
classification model. Fourth, mutual information is introduced to evaluate features for concept
drift detection. The results show that the mutual information between packet size and protocol is
high and stable, which indicates that the feature is suitable for concept drift detection. Fifth, this
paper uses Hoeffding boundary to determine the window size of concept drift detection. The

appropriate window size is significant for fast and effective concept drift detection.

Keywords concept drift; machine learning; information entropy detection; incremental ensemble

learning; traffic classification
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a better performance than ensemble all. And then through
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subset. The proposed algorithm can eliminate irrelevant and
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concept drift effectively. Experimental results show that the
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effectively while ensuring the classification performance, so

as to achieve the optimal balance of the -classification

performance, efficiency and stability.
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