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a b s t r a c t 

Ontology is a semantic analysis and calculation model, which has been applied to many 

subjects. Ontology similarity calculation and ontology mapping are employed as machine 

learning approaches. The purpose of this paper is to study the leave-two-out stability 

of ontology learning algorithm. Several leave-two-out stabilities are defined in ontology 

learning setting and the relationship among these stabilities are presented. Furthermore, 

the results manifested reveal that leave-two-out stability is a sufficient and necessary con- 

dition for ontology learning algorithm. 
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1. Introduction 

It is in philosophy that the term “ontology” is first ap- 

plied to describe the connection nature of things and the 

inherently hidden connections of their components. Ontol- 

ogy, being a model for storing and representing knowl- 

edge, has been widely applied in knowledge management, 

machine learning, information systems, image retrieval, 

information retrieval search extension, collaboration and 

intelligent information integration in information and com- 

puter science. Meanwhile, ontology is an effective con- 

cept semantic model and a powerful analysis tool. It has 

been used extensively in pharmacology, biology, medicine, 

geographic information system and social science in the 

past ten years (see Przydzial et al., [1] , Koehler et al., 

[2] , Ivanovic and Budimac [3] , Hristoskova et al., [4] , and 

Kabir [5] ). 
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A simple graph can be used to express the structure 

of ontology. On that graph, each vertex represents a con- 

cept, object or element in ontology. Each (directed or undi- 

rected) edge refers to a relationship or hidden connec- 

tion between two concepts (objects or elements). Let O 

be an ontology and G be a simple graph of O . The pur-

pose of ontology engineer application is to get the simi- 

larity calculating function and then compute the similar- 

ities between ontology vertices. The inherent association 

between vertices in ontology graph can be illustrated by 

these similarities. Ontology mapping is to obtain the ontol- 

ogy similarity measuring function by measuring the sim- 

ilarity between vertices from different ontologies. Such a 

mapping connects different ontologies, through which a 

potential link between the objects or elements from dif- 

ferent ontologies can be acquired. The ontology similar- 

ity function Sim : V × V → R 

+ ∪ { 0 } is a semi-positive score

function mapping in which each pair of vertices maps to a 

non-negative real number. 

An advanced usage of handling the ontology similarity 

computation is using ontology learning algorithm which 

gets an ontology function f : V → R . Using such an on-

tology function, the ontology graph is mapped into a line 

consisting of real numbers. After comparing the difference 

between their corresponding real numbers, the similarity 
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between two concepts can be measured and in which the

dimensionality reduction is the ore of the idea. If the on-

tology function is to be associated with ontology applica-

tion, a vector is a very good choice as it expresses all the

information of a vertex, for instance v . In a simpler repre-

sentation, the notations are slightly confused and v is used

to denote both the ontology vertex and its corresponding

vector. The vector is mapped to a real number by ontol-

ogy function f : V → R . The ontology function, which is a

dimensionality reduction operator, maps vectors of multi-

dimension into one dimensional ones. 

All the related information of an arbitrary vertex in on-

tology graph G is expressed by a p dimensional vector,

which includes its instance, structure, name, attribute, and

semantic information of the concept which is correspond-

ing to the vertex and that is contained in its vector. In

order not to lose generality, it can be assumed that v =
{ v 1 , . . . , v p } is a vector corresponding to a vertex v . Their

notations are slightly confused and v is adopted to repre-

sent both the ontology vertex and its corresponding vector.

In order to obtain an optimal ontology function f : V →
R , ontology learning algorithms are used by the authors.

Therefore, the value of | f (v i ) − f (v j ) | is used to determine

the similarity between two vertices v i and v j . Dimensional-

ity reduction, i.e., using real number to represent p dimen-

sion vector is the core of such kind of ontology algorithm.

In this way, we can regard an ontology function f as a di-

mensionality reduction operator f : R 

p → R . 

There are many effective methods for getting efficient

ontology similarity measure or ontology mapping algo-

rithm. They have been studied in terms of ontology func-

tion. Moreover, the theoretical research of ontology algo-

rithms has been contributed by several researchers. The

uniform stability of multi-dividing ontology algorithm and

the generalization bounds for stable multi-dividing ontol-

ogy algorithms was put forth by Gao and Xu [6] . A gradi-

ent learning model for ontology similarity measuring and

ontology mapping in multi-dividing setting was proposed

by Gao and Zhu [7] cooperatively. In the setting, the sam-

ple error was determined in terms of the hypothesis space

and the ontology dividing operator in which one can sup-

pose that V is an instance space. 

In this article, we research the influences of ontology

learning algorithm when two sample vertices are deleted

from ontology sample set. In next section, we describe

the detailed notations, definitions and setting of ontol-

ogy learning problem. And then, the main conclusions are

drawn in Section 3 . 

2. The notations, definitions and setting of ontology 

learning problem 

Suppose that V is a compact domain in Euclidean

space and Y is a set of labels. Let μ( v, y ) be an

unknown probability distribution on Z = V × Y and S =
{ (v 1 , y 1 ) , . . . , (v n , y n ) } = (v i , y i ) n i =1 

= (z i ) 
n 
i =1 

be an ontology

sample set consisting of n samples drawn i.i.d. from the

probability distribution on Z n . The aim of ontology learn-

ing is to predict an ontology function f S : V → R using the

empirical ontology data S which evaluates at a new ontol-

ogy vertex v to predict its corresponding value of y . 
Let L : R 

V × V × R → R be the ontology loss function

and L ( f, z ) be the value of punishment for fixed ontology

function f and z = (v , y ) . Throughout our paper, we always

assume that the loss function L is square ontology loss

L ( f, z) = ( f (v ) − y ) 2 and there exists M which satisfies 0 ≤
L ( f, z ) ≤ M for any f ∈ F (here F is a hypothesis space in

ontology setting) and z ∈ Z . Denote l(z) = L ( f, z) for conve-

nience. Thus l(z) : V × Y → R and we set L = { l( f ) : f ∈ F}
as the space of ontology loss function. 

The ontology expected error for fixed ontology func-

tion f , ontology loss function L and a probability distribu-

tion μ is defined by: R ( f ) = E Z L ( f, z) . When L is square

ontology loss, we have 

R ( f ) = E Z L ( f, z) = 

∫ 
V,Y 

( f (v ) − y ) 2 dμ(v , y ) 

= E μ| f (v ) − y | 2 . 
However, R ( f ) can’t be calculated directly since μ is un-

known. In reality, we compute the ontology empirical er-

ror instead which is presented as ̂ R S ( f ) = 

1 
n 

∑ n 
i =1 L ( f, z i ) .

In addition, in our square ontology loss setting, it is equal

to ̂ R S ( f ) = 

1 
n 

∑ n 
i =1 ( f (v i ) − y i ) 

2 = E μn ( f (v ) − y ) 2 , where μn

is the ontology empirical supported on { v 1 , . . . , v n } which

means μn = 

∑ n 
i =1 δv i /n and δv i is the vertex evaluation

functional on v i . 

In what follows, set S i, j as the ontology training set

from S by deleting two vertices v i and v j (1 ≤ i < j ≤ n ).

For our ontology learning setting, the functions f S and f S i, j 

are the minimizers of ̂ R S ( f ) and 

̂ R S i, j ( f ) , respectively. The

notations E S and P S are used to express the expectation

and the probability on the ontology training set S which is

drawn i.i.d, according to probability distribution on Z n . 

An ontology algorithm is called symmetric if the

optimal ontology function can’t be changed when the

elements in training set S are re-arranged. Given an on-

tology training set S and an ontology function space F ,

the almost ontology learning algorithm is defined as a

symmetric procedure which chooses an ontology function

f ε 
E 

S 
that minimizes the ontology empirical risk over all

ontology functions f ∈ F , we infer ̂ R S ( f ε 
E 

S ) ≤ inf 
f∈F ̂

 R S ( f ) + ε E , (1)

where ε E > 0. 

An ontology learning map is called (universally, weakly)

consistent if for any positive number ε c > 0, we have 

lim 

n →∞ 

sup 

μ
P { R ( f S ) > inf 

f∈F 
R ( f ) + ε c } = 0 . 

The consistency is universal implies that the inequality

above is established with respect to the set of any measure

on Z , whereas weak consistency means only convergence

in probability and strong consistency requires almost sure

convergence. 

Let F be any class of functions. F is a (weak) uniform

Glivenko–Cantelli (in short, uGC) class if for any positive

number ε, 

lim 

n →∞ 

sup 

μ
P { sup 

f∈F 
| E μn 

f − E μ f | > ε} = 0 . 

When comes to the ontology loss functions l , the definition

implies that for all distributions μ there exist ε n and δε n ,n
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such that lim n →∞ 

ε n = 0 , lim n →∞ 

δn = 0 and 

P { sup 

f∈F 
| R [( f ) − ̂ R S ( f ) | > ε n } ≤ δε n ,n . 

For any ontology function space F , it is called a strong 

uniform Glivenko–Cantelli class if for any positive number 

ε, we deduce 

lim 

n →∞ 

sup 

μ
P { sup 

m ≥n 
sup 

f∈F 
| E μm 

f − E μ f | > ε} = 0 . 

For bounded ontology loss functions, weak uGC is equiva- 

lent to strong uGC and the weak consistency is equivalent 

to strong consistency. 

The uniform stability of ontology learning algorithm is 

stated as for any S ∈ Z n , i, j ∈ { 1 , . . . , n } , we have: 

sup 

z∈ Z 
| L ( f S , z) − L ( f S i, j , z) | ≤ β. (2) 

The ( β , δ) hypothesis stability of ontology learning al- 

gorithm is stated as follows which is a natural criterion for 

hypothesis spaces (here lim n →∞ 

β = 0 and lim n →∞ 

δ = 0 ), 

P S { sup 

z∈ Z 
| L ( f S , z) − L ( f S i, j , z) | ≤ β} ≥ 1 − δ. (3) 

Similarly, the cross-validation in leave-two-out setting 

( CV lto ) stability of ontology learning algorithm can be pre- 

sented that for any k ∈ { 1 , . . . , n } , we infer 

P S {| L ( f S , z k ) − L ( f S i, j , z k ) | ≤ βCV } ≥ 1 − δCV . 

In fact, uniform stability reveals ( β , δ) hypothesis stability 

which reveals CV lto stability in ontology learning setting. 

The following facts are easily to check and will be used 

in the next section. 

E S [ R ( f S )] = E S [ E z V ( f S , z)] = E S,z [ V ( f S , z)] , 

for all i ∈ { 1 , . . . , n } , and 

E S [ R ( f S )] = E S 

[ 

1 

n 

n ∑ 

i =1 

L ( f S , z i ) 

] 

= 

1 

n 

n ∑ 

i =1 

E S [ L ( f S , z i )] 

= E S [ V ( f S , z i )] . 

The ontology learning map A is called distribution- 

independent, (β(n ) 
CV 

, δ(n ) 
CV 

) CV lto stable if for any positive in- 

teger n there exist a β(n ) 
CV 

and δ(n ) 
CV 

such that for any k ∈ 

{ 1 , . . . , n } and any distribution μ it satisfies lim n →∞ 

β(n ) 
CV 

= 

0 , lim n →∞ 

δ(n ) 
CV 

= 0 and 

P S {| L ( f S i, j , z k ) − L ( f S , z k ) | ≤ β(n ) 
CV 

} ≥ 1 − δ(n ) 
CV 

. 

The ontology learning map A is called distribution- 

independent, PH stable if for any positive integer n there 

exist a β(n ) 
PH 

such that for any k ∈ { 1 , . . . , n } and any distri-

bution μ, we infer lim n →∞ 

β(n ) 
PH 

= 0 and 

E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] ≤ β(n ) 
PH 

. 

The ontology learning map A is called distribution- 

independent, Elto err stable if for any positive integer n 

there exist a β(n ) 
EL 

and a δ(n ) 
EL 

such that for any k ∈ { 1 , . . . , n }
and any distribution μ, we deduce lim n →∞ 

β(n ) 
EL 

= 0 , 

lim n →∞ 

δ(n ) 
EL 

= 0 and 

P S {| R ( f S ) − 1 

n 

n ∑ 

k =1 

L ( f S i, j , z k ) | ≤ β(n ) 
EL 

} ≥ 1 − δ(n ) 
EL 

. 
The ontology learning map A is called distribution- 

independent, leave-two-out hypothesis stable if for any 

positive integer n there exists a βn 
H 

such that for any dis- 

tribution μ, we verify lim n →∞ 

βn 
H 

= 0 and 

E S,z [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] ≤ βn 
H . 

Furthermore, an ontology learning map A is called LTO sta- 

ble if it shows both CV lto and Elto err stability. 

The ontology learning map A is called distribution- 

independent, pseudo-pointwise hypothesis stable if for any 

positive integer n , k ∈ { 1 , . . . , n } and any distribution μ,

there exists a β(n ) 
pPH 

such that lim n →∞ 

β(n ) 
pPH 

= 0 and 

E S [ L ( f f 
S i, j 

, z k ) − L ( f f S , z k )] ≤ β(n ) 
pPH 

. 

Pseudo-stability is also sufficient and necessary for uni- 

versal consistency of ontology learning algorithm (judged 

by the conclusion in next section), but it is weaker than 

PH stability. 

3. Main results and proofs 

The results stated below manifest the equivalent of 

CV lto stability and PH stability in ontology setting. 

Theorem 1. CV lto stability with β lto and δlto leads to PH sta- 

bility with βPH = βlto + Mδlto and PH stability with βPH re- 

veals CV lto stability with (α, 
βPH 
α ) where α < βPH . 

Proof. In terms of the bound on the ontology loss func- 

tion and the definition of CV lto stability, we get for any 

k ∈ { 1 , . . . , n } , 
E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] ≤ βlto + Mδlto . 

So, the first thesis is hold. 

According to the definition of PH stability, we also ob- 

tain 

E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] ≤ βPH . 

In view of Markov’s inequality and the fact that 

| L ( f S i, j , z k ) − L ( f S , z k ) | ≥ 0 , we infer 

P [ | L ( f S i, j , z k ) − L ( f S , z k ) | > α] 

≤ E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] 
α

≤ βPH 

α
. 

Thus, we complete the proof. �

The next conclusion show that both Elto err and CV lto 

stability together are enough for generalization of symmet- 

ric ontology learning algorithms. 

Theorem 2. The generalization ontology learning error can 

be expressed as 

E S (R ( f S ) − ̂ R S ( f S )) 
2 ≤ 2 E S (R ( f S ) −

∑ n 
k =1 L ( f S i, j ,z k 

) 

n 

) 2 

+ 2 ME s | L ( f S i, j , z k ) − L ( f S , z k ) | . 
Proof. Obviously, the left hand part can be presented as 

E S (R ( f S ) − ̂ R S ( f S )) 
2 ≤ 2 E S 

(
R ( f S ) −

∑ n 
k =1 L ( f S i, j ,z k 

) 

n 

)2 

+2 E S 

(
R ( f S ) −

∑ n 
k =1 L ( f S i, j ,z k 

) 

n 

)2 

. 
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The second term on the right hand can be further deduced

as 

E S 

(
R ( f S ) −

∑ n 
k =1 L ( f S i, j , z k ) 

n 

)2 

= E S 

(∑ n 
k =1 L ( f S , z k ) 

n 

−
∑ n 

k =1 L ( f S i, j , z k ) 

n 

)2 

= E S 

n ∑ 

k =1 

| L ( f S , z k ) − L ( f S i, j , z k ) | 2 

≤ ME S 

n ∑ 

k =1 

| L ( f S , z k ) − L ( f S i, j , z k ) | 

≤ ME S 

n ∑ 

k =1 

| L ( f S , z k ) − L ( f S i, j , z k ) | 

= 

M 

n 

E S 

n ∑ 

i =1 

| L ( f S , z i ) − L ( f S i, j , z k ) | 

= ME S | L ( f S , z k ) − L ( f S i, j , z k ) | . 
�

From Theorem 2 , we can directly get that LTO stability

implies generalization in ontology setting. 

From facts above, we can check the theorem below and

the detailed proofs are skipped. 

Theorem 3. Suppose f S , f S i, j ∈ F and ontology loss function

is bounded. Then LTO stability is sufficient and necessary for

consistency of ontology learning algorithm. Thus, the follow-

ing statements are equivalent (i) the ontology map induced

by almost ontology learning algorithm is LTO stable, (ii) al-

most ontology learning algorithm is universally consistent,

(iii) L is uGC. 

The result above implies that CV lto stability is suf-

ficient and necessary for consistency of ontology learn-

ing algorithm on a function class F and ontology learn-

ing algorithm on a uGC class means Elto err stability with

lim n → β β = 0 and 

E S (R ( f S ) − 1 

n 

n ∑ 

k =1 

L ( f S i, j , z k )) 
2 ≤ βn . 

The lemmas presented next show the property of ε E -
minimizer. 

Lemma 1. There is a ε E -minimizer that for any k ∈
{ 1 , . . . , n } 
L ( f S , z k ) − L ( f S i, j , z k ) + 2(n − 2) ε E ≥ 0 . 

Proof. According to definition of almost minimizer (1) , we

get 

1 

n 

∑ 

z k ∈ S 
L ( f S i, j , z k ) −

1 

n 

∑ 

z k ∈ S 
L ( f S , z k ) ≥ −ε E n , 

1 

n 

∑ 

z k ∈ S i, j 

L ( f S i, j , z k ) −
1 

n 

∑ 

z k ∈ S i, j 

L ( f S , z k ) ≤
n − 2 

n 

ε E n −2 , 

The first inequality above can be re-formulated as 
[ 

1 

n 

∑ 

z k ∈ S i, j 

L ( f S i, j , z k ) −
1 

n 

∑ 

z k ∈ S i, j 

L ( f S , z k ) 

] 

+ 

1 

n 

L ( f S i, j , z k ) 

− 1 

n 

L ( f S , z k ) ≥ −ε E n . 

Moreover, we get 

L ( f S i, j , z k ) − L ( f S , z k ) ≥ −nε E n − (n − 2) ε E n −2 . 

By means of ε N n is a decreasing sequence, we infer 

L ( f S i, j , z k ) − L ( f S , z k ) ≥ −2(n − 2) ε E n −2 . 

Lemma 2. In the almost ontology learning algorithm setting

with ε E n > 0 selected with character lim n →∞ 

nε E n = 0 , we get

that for any k ∈ { 1 , . . . , n } 
E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] 

≤ E S R ( f S i, j ) − E S ̂
 R S ( f S ) + 4(n − 2) ε E n −2 . 

Proof. We observe that 

E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] 
= E S [ | L ( f S i, j , z k ) − L ( f S , z k ) + 2(n − 2) ε E n −2 

− 2(n − 2) ε E n −2 | ] 
≤ E S [ | L ( f S i, j , z k ) − L ( f S , z k ) + 2(n − 2) ε E n −2 | ] 

+ 2(n − 2) ε E n −2 . 

Using the result in Lemma 1 , we have that for any k ∈
{ 1 , . . . , n } , 
L ( f S , z k ) − L ( f S i, j , z k ) + 2(n − 2) ε E n −2 ≥ 0 . 

Hence 

E S [ | L ( f S i, j , z k ) − L ( f S , z k ) + 2(n − 2) ε E n −2 | ] 
= E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] + 2(n − 2) ε E n −2 . 

On the other hand, using the linearity of expectations, we

have 

E S [ L ( f S i, j , z k ) − L ( f S , z k )] = E S R ( f S i, j ) − E S ̂
 R S ( f S ) 

and thus 

E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] ≤ E S R ( f S i, j ) 

− E S ̂
 R S ( f S ) + 4(n − 2) ε E n . �

Now, we get the fact on equivalent in ontology learning

setting. 

Theorem 4. Assume the exact minimization of the ontology

learning algorithm and the existence of the minima of the

true risk R ( f ∗) where f∗ ∈ arg min f∈F R ( f ) , then universal

consistency is equivalent to ( β , δ) CV lto stability in ontology

learning setting. 

Proof. According to the assumption, we get 

L ( f S i, j , z k ) − L ( f S , z k ) ≥ 0 . 

Therefore, the following equivalences are established: 

(β, δ) CV lto stability ⇔ lim 

n →∞ 

E S [ | L ( f S i, j , z k ) −L ( f S , z k ) | ] = 0

⇔ lim 

n →∞ 

E S [ L ( f S i, j , z k ) − L ( f S , z k )] = 0
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ε c . 

 

⇔ lim 

n →∞ 

E S R ( f S i, j ) − E S ̂
 R S ( f S ) = 0 

⇔ lim 

n →∞ 

E S R ( f S i, j ) = lim 

n →∞ 

E S ̂
 R S ( f S ) . 

In terms of ̂ R S ( f S ) ≤ ̂ R S ( f ∗) and R ( f ∗) ≤ R ( f S i, j ) , we infer 

R ( f ∗) ≤ lim 

n →∞ 

E S R ( f S i, j ) = lim 

n →∞ 

E S ̂
 R S ( f S ) 

≤ lim 

n →∞ 

E S ̂
 R S ( f ∗) = R ( f ∗) , 

and 

lim 

n →∞ 

E S R ( f S i, j ) = lim 

n →∞ 

E S ̂
 R S ( f S ) = lim 

n →∞ 

E S ̂
 R S ( f ∗) = R ( f ∗) , 

which reveals that in probability lim n →∞ 

R ( f S i, j ) = R ( f ∗) . 
At last, the result is followed by the fact that the con- 

vergence of R ( f S ) to R ( f ∗) is equivalent to the convergence 

of R ( f S i, j ) to R ( f ∗) in probability. �

Theorem 5. Assume that the ontology learning algo- 

rithm related on a class F is distribution-independent 

CV lto stable, and the ontology loss is bounded by M. 

Then, the ontology learning algorithm on F is universally 

consistent. 

Proof. Let S = (z 1 , . . . , z n ) and S n +2 = { z 1 , . . . , z n +2 } are

fixed ontology sample sets. According to the assumption of 

CV lto stability for ontology learning algorithm, for β(n +2) 
PH 

= 

β(n +2) 
CV lto 

+ Mδ(n + 2) (n +2) 
CV lto 

and any distribution μ, we 

have 

E S n +2 
[ L ( f S , z n +2 ) − L ( f S n +2 

, z n +2 )] 

≤ E S n +2 
[ | L ( f S , z n +2 ) − L ( f S n +2 

, z n +2 ) | ] ≤ β(n +2) 
PH 

. (4) 

Furthermore, for any distribution μ, we infer 

E S R ( f S ) − E S n +2 ̂
 R S n +2 

( f S n +2 
) 

= E S n +2 
[ L ( f S , z n +2 ) − L ( f S n +2 

, z n +2 )] . (5) 

In view of (4) and (5) , for any distribution μ, we infer 

E S R ( f S ) ≤ E S n +2 ̂
 R S n +2 

[ f S n +2 
] + β(n +2) 

PH 
. (6) 

Next, we show that 

lim 

n →∞ 

sup 

μ
(E S R ( f S ) − inf 

f∈F 
R ( f )) = 0 . 

Let ημ = inf f∈F R ( f ) for distribution μ. Since R ( f ) ≥ ημ and 

E S R ( f S ) ≥ ημ for any f ∈ F , using (6) , we obtain for any 

distribution μ, 

ημ ≤ E S R ( f S ) ≤ E S R ( f S ) ≤ E S n +2 
R S n +2 

( f ε c ,μ) + β(n +2) 
PH 

. (7) 

There exists f ε c ,μ ∈ F with R ( f ε c ,μ) < ημ + ε c for any 

ε c > 0. Using the property of almost ontology learning al- 

gorithm, we deduce 

R S n +2 
( f S n +2 

) ≤ R S n +2 
( f ε c ,μ) + ε E n +2 . 

The following inequality (for any distribution μ) is ob- 

tained by taking expectations with respect to S n +2 and 

substituting in (7) , 

ημ ≤ E S R ( f S ) ≤ E S R ( f S ) ≤ E S n +2 ̂
 R S n +2 

( f ε c ,μ) + ε E n +2 + β(n +2) 
PH 

. 

Fixed ontology function f ε c ,μ, in terms of 

lim n →∞ 

ε E 
n +2 

= 0 and lim n →∞ 

β(n +2) 
PH 

= 0 , we get (for any 

distribution μ) 
E S n +2 ̂
 R S n +2 

[ f ε c ,μ] = 

1 

n + 2 

n +2 ∑ 

i =1 

E S n +2 
L ( f ε c ,μ, z i ) 

= R ( f ε c ,μ) ≤ ημ + ε c . 

Assume n is a large number, for any distribution μ and any 

fixed ε c > 0, we get 

ημ ≤ E S R ( f S ) ≤ ημ + ε c . 

Therefore, following from lim n →∞ 

sup μ(R [ f S ] − ημ) = 0 , 

for any ε c > 0 we have 

0 ≤ lim 

n →∞ 

inf sup 

μ
(R ( f S ) − ημ) ≤ lim 

n →∞ 

sup sup 

μ
(R ( f S ) − ημ) ≤

Let V S = R [ f S ] − ημ be a random variable. Obviously, V S ≥
0 and lim n →∞ 

sup μ E S V S = 0 . Following from Markov’s in- 

equality to V S , we deduce that for any positive α, 

lim 

n →∞ 

sup 

μ
P [ R ( f S ) > ημ + α] lim 

n →∞ 

sup P [ V S > α] 

≤ lim 

n →∞ 

sup 

E S [ V S ] 

α
= 0 . 

This implies that given CV lto stability, the distribution inde- 

pendent convergence of R ( f S ) to ημ consistency in ontology 

learning setting. �

Theorem 6. If the otology loss function is bounded, then con- 

sistency of ontology learning algorithm reveals CV lto stability 

of ontology learning algorithm. 

Proof. Theorem 1 tells us that PH stability and CV lto stabil- 

ity are equivalent if the ontology loss is bounded. For PH 

stability, we have to present that 

lim 

n →∞ 

sup 

μ
E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] = 0 . 

By means of Lemma 2 , for any distribution μ, we get 

E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] 
≤ E S R ( f S i, j ) − E S ̂

 R S ( f S ) + 4(n − 2) ε E n −2 . (8) 

Fixed (universal) consistency, since a necessary and suffi- 

cient condition for universal consistency of ontology learn- 

ing algorithm is that L is uGC, we obtain L is a uGC class

and thus R ( f S i, j ) is close to ̂ R S ( f S i, j ) . Therefore, R ( f S i, j ) −
R S ( f S ) is small. 

It is easy to get 

E S [ R ( f S i, j ) − ̂ R S ( f S )] 

= E S [ R ( f S i, j ) − ̂ R S ( f S i, j )] + E S [ ̂  R S ( f S i, j ) − ̂ R S ( f S )] . (9) 

Using uGC property of L again, with probability at least 

1 − δn (ε n ) , we obtain 

R ( f S i, j ) − ̂ R S ( f S ) ≤ ε n 

and for any distribution μ

E S [ ̂  R S ( f S i, j ) − ̂ R S ( f S )] 

≤ E S [ | ̂  R S ( f S i, j ) − ̂ R S ( f S ) | ] ≤ ε n + Mδn (ε n ) . (10) 

In terms of 

̂ R S ( f S i, j ) = 

(n − 2) ̂  R S ( f S i, j ) + L ( f S i, j , z k ) 

n 

≤ (n − 2)( ̂  R S ( f S i, j ) + ε E n −2 ) + L ( f S i, j , z k ) 
n 
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= 

(n − 2)( ̂  R S [ f S i, j ] + ε E n −2 ) + L ( f S , z k ) − L ( f S , z k ) + L ( f S i, j , z k ) 

n 

+ 

n − 2 

n 
ε E n −2 

≤ ̂ R S ( f S ) + 

M 

n 
+ ε E n −2 , 

for any distribution μ, we infer 

E S [ ̂  R S ( f S i, j ) − ̂ R S ( f S )] ≤ M 

n 

+ ε E n −2 . (11)

Combining (9), (10) and (11) , for any distribution μ, we ob-

tain 

E S [ R ( f S i ) − ̂ R S ( f S )] ≤ ε n + Mδn (ε n ) + 

M 

n 

+ ε E n −2 . 

Using (8) , for any distribution μ, we deduce 

E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] 
≤ ε n + Mδn (ε n ) + 

M 

n 

+ ε E n −2 + 4(n − 2) ε E n −2 . 

Note that ε E n can be selected to be a decreasing sequence

with lim n →∞ 

(4 n − 3) ε E n = 0 . 

Further, if L is uGC, there exists a sequence ε n > 0

such that lim n →∞ 

ε n = 0 and lim n →∞ 

δn (ε n ) = 0 . Hence it

is possible to select a sequence ε n satisfies ε n → 0 and

δn ( ε n ) → 0. By combining these facts together, we get 

lim 

n →∞ 

sup 

μ
E S [ | L ( f S i, j , z k ) − L ( f S , z k ) | ] = 0 . 

The desired result is proved since the universal consistency

reveals PH hypothesis stability. �

The produce of proving implies that CV lto stability

means the leave-two-out error converges to the training

error in probability. 

Our last theorem shows that consistency of ontology

learning algorithm implies Elto err stability. 

Theorem 7. Ontology learning algorithm on a uGC class re-

veals 

E S 

( 

R ( f S ) − 1 

n 

n ∑ 

k =1 

L ( f S i, j , z k ) 

) 2 

≤ βn , 

where lim n →∞ 

βn = 0 . 

Proof. In terms of the triangle inequality, we have 

E S 

( 

R ( f S ) − 1 

n 

n ∑ 

k =1 

L ( f S i, j , z k ) 

) 2 

≤ 2 E S (R ( f S ) − ̂ R S ( f S )) 
2 

+ 2 E S 

( ̂ R S ( f S ) − 1 

n 

n ∑ 

k =1 

L ( f S i, j , z k ) 

) 2 

. 

Since with probability 1 − δ1 we can check | ̂  R S ( f S ) −
R ( f S ) | ≤ β1 , thus 

E S ( ̂  R S ( f S ) − R ( f S )) 
2 ≤ Mβ1 + M 

2 δ1 . 

On the other hand, 
E S 

( ̂ R S ( f S ) − 1 

n 

n ∑ 

k =1 

L ( f S i, j , z k ) 

) 2 

≤ ME S | L ( f S , z k ) − L ( f S i, j , z k ) | . 
Since ontology learning algorithm is on a uGC class ( β2 ,

δ2 ) CV lto stability establishes, we have 

ME S | L ( f S , z k ) − L ( f S i, j , z k ) | ≤ M β2 + M 

2 δ2 . 

Therefore, we deduce 

E S 

( ̂ R S ( f S ) − 1 

n 

n ∑ 

k =1 

L ( f S i, j , z k ) 

) 2 

≤ M β2 + M 

2 δ2 . 

which lead to 

E S 

( 

R ( f S ) − 1 

n 

n ∑ 

k =1 

L ( f S i, j , z k ) 

) 2 

≤ 2 M β1 + 2 M 

2 δ1 + 2 M β2 + 2 M 

2 δ2 . 

�

4. Conclusion 

Ontology, as a data structural storage, representation

and computation model, has been employed in various

subjects and been proved to have high efficiency. The

problem of ontology learning algorithms is finding the

similarity measure between concepts (vertices). Various

learning techniques have been applied for ontology en-

gineering in recent years. One popular learning trick is

mapping each vertex v to a real number f ( v ) by ontology

function f , then the similarity between v i and v j is judged

by | f (v i ) − f (v j ) | . 
In this paper, we study the stability of ontology learning

algorithm. The relationship between several stabilities are

determined, and we present that leave-two-out stability is

a necessary and sufficient condition for ontology learning

algorithm. 
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