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Abstract: In information retrieval, ontology is used to search the information 
which has highly semantic similarity of the original query concept, and  
return the results to the user. Ontology mapping is used to create the 
relationship between different ontologies, and the essence of which is similarity 
computation. In this article, we present new algorithms for ontology similarity 
measure and ontology mapping by determining the similarity matrix of 
ontology. The optimisation strategy and iterative procedure are designed in 
terms of metric distance learning tricks. The simulation experimental results 
show that the proposed new algorithms have high accuracy and efficiency on 
ontology similarity measure and ontology mapping in biology, physics 
applications, plant science and humanoid robotics. 
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1 Introduction 

As a knowledge representation and conceptual shared model, ontology has been applied 
in image retrieval, knowledge management and information retrieval search extension. 
Acting as an effective concept semantic model, ontology also employed in disciplines 
beyond computer science, such as social science (for instance, see Bouzeghoub and 
Elbyed, 2006), biology science (for instance, see Hu et al., 2003) and geography science 
(for instance, see Fonseca et al., 2001). 

The ontology model is actually a graph G = (V, E), each vertex v in an ontology graph 
G represents a concept and each edge e = vivj on an ontology graph G represents a 
relationship between concepts vi and vj. The target of ontology similarity measure is to 
find a similarity function Sim: V × V → R+ ∪ {0} which maps each pair of vertices to a 
real number. The aim of ontology mapping is to bridge the link between two or more 
ontologies. Let G1 and G2 be two ontology graphs corresponding ontology O1 and O2 
respectively. For each v ∈ G1, find a set Sv ⊆ V(G2) where the concepts correspond to 
vertices in Sv are semantic close to the concept correspond to v. One method to get such 
mapping is, for each v ∈ G1, computing the similarity S(v, vj) where vj ∈ V(G2) and 
choose a parameter 0 < M < 1. Then Sv is a collection such that the element in Sv satisfies 
S(v, vj) ≥ M. In this point of view, the essence of ontology mapping is to obtain a 
similarity function S and select a suitable parameter M. In our article, we focus on the 
technologies to yield a similarity matrix by virtue of distance learning. 

For ontology similarity measure and ontology mapping, there have several effective 
learning tricks. Wang et al. (2010) proposed to learn a score function which mapping 
each vertex to a real number, and the similarity between two vertices can be measured 
according to the difference of real number they correspond to. Huang et al. (2011a) 
presented fast ontology algorithm for calculating the ontology similarity in a short time. 
Gao and Liang (2011) raised that the optimal ontology function can be determined by 
optimising NDCG measure, and applied such idea in physics education. Gao and Gao 
(2012) deduced the ontology function using the regression approach. Huang et al. 
(2011b) obtained ontology similarity function based on half transductive learning.  
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Gao and Xu (2013) explored the learning theory approach for ontology similarity 
computation using k-partite ranking method. Zhu and Gao (2014) proposed new criterion 
for ontology computation from AUC and multi-dividing standpoint. Gao et al. (2013) 
presented new ontology mapping algorithm using harmonic analysis and diffusion 
regularisation on hypergraph. Very recently, Gao and Shi (2013) proposed new ontology 
similarity computation technology such that the new calculation model consider 
operational cost in the real implement. Several theoretical analysis of ontology algorithm 
cans refer to Gao et al. (2012), Gao and Xu (2012) and Yan et al. (2013). 

In this paper, we determine the new ontology similarity computation and ontology 
mapping algorithms based on metric distance learning tricks. Using the optimisation 
algorithm, we determine the optimal matrix to compute the similarity of vertices. The 
experiments are designed to show the efficiency of the algorithms. 

2 Method of similarity matrix learning 

First, we use a vector to represent the information of each vertex in ontology graph. Let 
{v1, …, vn} ∈ Rd be n vertices. Our aim in this paper is to seek a positive definite 
similarity matrix A which parameterises the standard squared distance. 

( ) ( ) ( ), T
i j i j i jd v v v v v v= − −A A  (1) 

Suppose that we know the prior knowledge about intervertex distances. Consider 
relationships restricting the dissimilarity or similarity between pairs of ontology vertices. 
Two ontology vertices are similar if the distance between them is not larger than a given 
upper bound, i.e., dA(vi, vj) ≤ u for a relatively small value of parameter u. Similarly, two 
ontology vertices are dissimilar if dA(vi, vj) ≥ l for sufficiently large parameter l. 

A set of intervertex distance restrains are given as described above, and our problem 
is to learn a positive-definite similarity matrix A that parameterises the corresponding 
distance (1). Specifically, this learned similarity function is used to improve the accuracy 
of a k-nearest neighbour in ontology graph, or to incorporate semi-supervision into a 
distance-based learning algorithm. In many settings, we know the prior information about 
the distance function itself. If data is Gaussian, we parameterise the distance function in 
view of the inverse of the sample covariance. Hence, we regularise the similarity matrix 
A to be as close as possible to a given distance function, parameterised by A0. This 
implies that A0 is a given matrix with its elements (A0)ij determined by squared distance, 
and our optimal similarity matrix will as close as possible to A0. 

We quantify the measure of closeness between optimal similarity matrix A and given 
distance matrix A0 by a natural information-theoretic exists a simple bijection between 
the set of equal mean multivariate Gaussian distributions with mean μ and the set of 
distances. For given distance parameterised by A, its corresponding multivariate Gaussian 
is expressed as 

1 1( , ) exp ( , ) ,
2 Ap x d v μ

Z
⎧ ⎫= −⎨ ⎬
⎩ ⎭

A  

where A−1 is the covariance of the distribution and Z is a normalising constant. By virtue 
of such bijection, the distance between two distance functions parameterised by A0 and A 
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is measured by the differential relative entropy between their corresponding multivariate 
Gaussians approach, i.e., 

( )( ) ( )0
0

;
; ( ; ) ( ; ) log

( ; )
p v

KL p v p v p v dx
p v

= ∫
A

A A A
A

 (2) 

The distance (2) presents a well-founded measure of closeness between two distance 
functions. Based on (2), our distance metric learning problem for given pairs of similar 
vertices S and pairs of dissimilar vertices D can be determined as 

( )
( )
( )

0min  ( ; ) ( ; )

s.t.   ,  ( , )

       ,  ( , )
A i j

A i j

KL p v p v

d v v u i j S

d v v l i j D

≤ ∈

≥ ∈

A
A A

 (3) 

In this paper, we use the technology of LogDet divergence which is a Bregman matrix 
divergence generated by the convex function φ(V) = −log detV defined over the cone of 
positive-definite matrices. For n × n matrices A, A0, it equals 

( ) ( ) ( )1 1
0 0 0, tr log det .ldD n− −= − −A A AA AA  (4) 

Note that the differential relative entropy between two multivariate Gaussians can be 
expressed as the convex combination of a distance between mean vectors and the LogDet 
divergence between the covariance matrices (for more detail, see Davis and Dhillon, 
2006). Suppose the means of the Gaussians to be the same, we deduce 

( )( ) ( ) ( )1 1
0 00

1 1; ( ; ) , ,
2 2ld ldKL p v p v D D− −= =A A A A A A  (5) 

By Lehmann and Casella (2003), Stein’s loss is the unique scale invariant loss-function 
such that the uniform minimum variance unbiased estimator is also a minimum risk 
equivariant estimator. In ontology metric learning, the scale invariance reveals that the 
divergence (4) remains invariant under any scaling of the feature space. In terms of 

( , ) ( , ),T T
ld ldD D=S AS S BS A B  (6) 

the conclusion under any invertible linear transformation S can be further generalised to 
invariance. To represent the distance metric ontology learning problem (3), we exploit the 
equivalence in (5) and infer the following LogDet optimisation problem 

( )

( )( )( )
( )( )( )

0
0

min  ,

s.t.   tr  ( , )

       tr  ( , )

ld

T
i j i j

T
i j i j

D

v v v v u i j S

v v v v l i j D

− − ≤ ∈

− − ≥ ∈

A
A A

A

A

 (7) 

Note that the distance restrains on dA(vi, vj) become the above linear restrains on A. 
In certain situations, the feasible solution to (7) is not existed. To avoid such scenario 

happen, we incorporate slack variables into the formulation to ensure the existence of a 
feasible A. Let c(i, j) be the index of the (i, j)th constraint and ξ be a vector of slack 
variables, initialised to ξ0. Its components equal u for similarity constraints and l for 
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dissimilarity constraints. Then, we present the following optimisation problem instead  
of (7) 

( ) ( )

( )( )( )
( )( )( )

0 0
0,

( , )

( , )

min   , diag( ),diag( )

s.t.     tr  ( , )

          tr ( , )

ld ld
ξ

T
i j i j c i j

T
i j i j c i j

D γD ξ ξ

v v v v ξ i j S

v v v v ξ i j D

+

− − ≤ ∈

− − ≥ ∈

A
A A

A

A

 (8) 

Here, Dld(A, A0) is used to measure the difference between A and A0; 
Dld(diag(ξ),diag(ξ0)) is employed to determine the gap between slack variables; γ is the 
parameter to control the tradeoff between satisfying the constraints and minimising  
Dld(A, A0); A  0 denotes that A is a positive defined matrix; two restrictive conditions 
are used to control the distances of ontology vertices under matrix A according to the 
collection which the vertex pair (vi, vj) belong to. 

To solve the optimisation problem (8), we use the extension methods of Kulis et al. 
(2006). The optimisation method which forms the basis for the algorithm repeatedly 
computes Bregman projections, i.e., projections of the current solution onto a single 
constraint. This projection is implemented via the update 

( ) ( )1 ,T
t t t i j i j tβ v v v v+ = + − −A A A A  (9) 

where vi and vj are the constrained data ontology vertices, and β is the projection 
parameter calculated by the algorithm. Each constraint projection has complexity O(d2), 
and hence a single iteration of looping via all constraints has complexity O(cd2). We 
emphasise that no eigen-decomposition is required in the algorithm. The resulting 
algorithm is presented in Algorithm 1. The inputs to the algorithm are the starting matrix 
A0, the constraint data, and the slack parameter γ. If necessary, the projections can be 
measured efficiently over a factorisation W of the matrix, such that A = WTW. 
Algorithm 1 

Input: V: input d × n matrix; S: set of similar pairs; D: set of dissimilar pairs; u, l: distance 
thresholds; A0: input Mahalanobis matrix; γ: slack parameter; c: constraint index function 

Output: A: output similarity matrix 
A ← A0, λij ← 0, for any i and j. 
ξc(i,j) ← u for (i, j) ∈ S; otherwise ξc(i,j) ← l;
Repeat 
pick a constraint (i,j) ∈ S or (i, j) ∈ D.
p ← (vi, vj)TAt(vi, vj), δ ← 1 if (i, j) ∈ S, –1 otherwise 

( , )
( , )

( , ) ( , )

1min( , ( )),
2 1

c i j
ij c i j

c i j c i j

γξδ γ δλ ξ
p ξ δ p γ δ ξ

← − ← ←
− +

αα β
α α

 

λij ← λij – α, A ← A + βA(vi, vj)(vi, vj)TA 

until convergence 

Return ontology similarity matrix A 
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3 Some extension of ontology algorithm 

In this section, we consider Kernelising metric ontology learning algorithm. Suppose that 
A0 = I, i.e., the maximum entropy formulation that regularises to the baseline Euclidean 
distance. It is possible to Kernelise for other selections of A0, but not presented. If  
A0 = I, the corresponding K0 from the low-rank kernel ontology learning problem 
becomes K0 = VTV, the Gram matrix of the inputs ontology data. If instead of  
an explicit representation V of our data vertices, we have as input a kernel function  
κ(vi, vj) = φ(vi)Tφ(vi) with the associated kernel matrix K0 over the training ontology 
vertices, a natural question to ask is whether we can evaluate the learned metric on new 
ontology vertices in the kernel space. This requires the calculation of 

( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

!,
! !

, ,

2 .

i j

T
i j i j

TT T
i i i j j j

T
i i

nd v v
r n r

v v v v

v v v v v v

v v

−

=

= − +

=

φ φ

φ φ φ φ

φ φ φ φ φ φ

φ φ

A

A

A A A

A

 

Let ( , ) ( ) ( )T
i j i iκ v v v v= φ φA  be new kernel function. The ability to generalise to unseen 

data of ontology vertices reduces to the ability to calculate ( , ).i jκ v v  Note that A can be 
regarded as an operator in a Hilbert space, and its size is just the dimensionality of ϕ(v) 
which can potentially be infinite. 

Although A cannot be explicitly computed, it is still possible to calculate ( , ).i jκ v v  
Set A0 = I, the learned A matrix can be recursively unrolled since it is of the form 

( ) ( )''

', '

Tji
ij i i

i j

I σ v v= +∑ φ φA  

which followed by expanding equation (9) down to I. The new kernel function is hence 
computed by 

( ) ( ) ( ) ( )''

', '

, , ,ji
i j i j ij j ji i

i j

κ v v κ v v σ κ v v κ v v− = − +∑  

and is a function of the σij coefficients and the original kernel function κ. While 
minimising Dld(K, K0), the σij coefficients can be updated without affecting the 
asymptotic running time of the algorithm; i.e., in terms of optimising the following  
low-rank kernel learning problem for K, the necessary coefficients σij for evaluation of 

( , )i jκ v v  are yielded: 

( )0
0

min  ,

s.t.   2  ( , )
       2  ( , )

ld

ii jj ij

ii jj ij

D

K K K u i j S
K K K l i j D

+ − ≤ ∈
+ − ≥ ∈

K
K K
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This is to a trick for searching the nearest neighbour of a new ontology vertices in the 
kernel space under the learned metric with complexity O(n2). 

4 Experiments 

In this section, four simulation experiments relevance ontology similarity measure and 
ontology mapping are designed below. In order to adjacent to the setting of ontology 
algorithm, we use a vector with d dimension to express each vertex’s information. Such 
vector contains the information of name, instance, attribute and structure of vertex. Here 
the instance of vertex refers to the set of its reachable vertex in the directed ontology 
graph. 

4.1 Experiment on biology data 

We use ‘Go’ ontology O1 which was constructed in http://www.geneontology.org  
(Figure 1 shows the basic structure of O1) for our experiment. P@N [precision ratio,  
see Craswell and Hawking (2003) for more detail] is used to measure the equality of the 
experiment. We first give the closest N concepts for every vertex on the ontology graph 
by expert, and then we obtain the first N concepts for every vertex on ontology graph by 
the algorithm and compute the precision ratio. Ontology algorithms in Huang et al. 
(2011a), Gao and Liang (2011) and Gao and Gao (2012) are employed to ‘Go’ ontology, 
and we compare the precision ratio which we get from four methods. Several experiment 
results refer to Table 1. 

Figure 1 ‘Go’ ontology 
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Table 1 The experiment data for ontology similairty measure 

 P@3 average 
precision ratio 

P@5 average 
precision ratio 

P@10 average 
precision ratio 

P@20 average 
precision ratio 

Our algorithm 48.53% 56.91% 66.49% 78.83% 
Algorithm in 
Huang et al. (2011a) 

46.38% 53.48% 62.34% 74.59% 

Algorithm in 
Gao and Liang (2011) 

43.56% 49.38% 56.47% 71.94% 

Algorithm in 
Gao and Gao (2012) 

42.13% 51.83% 60.19% 72.39% 

When N = 3, 5, 10 or 20, the precision ratio by virtue of our algorithm is higher than the 
precision ratio determined by algorithms proposed in Huang et al. (2011a), Gao and 
Liang (2011) and Gao and Gao (2012). In particular, when N increases, such precision 
ratios are increasing apparently. Therefore, the algorithm described in our paper is 
superior to the method proposed by Huang et al. (2011a), Gao and Liang (2011) and Gao 
and Gao (2012). 

Figure 2 ‘Physical education’ ontology O2 

 

 

4.2 Experiment on physical education data 

We use physical education ontologies O2 and O3 (the structures of O2 and O3 are 
presented in Figures 2 and 3, respectively) for our second experiment. The goal of this 
experiment is determining the ontology mapping between O2 and O3 via similarity matrix 
which are deduced by Algorithm 1. P@N criterion is applied to measure the equality of 
the experiment. We first give the closest N concepts for each vertex on the ontology 
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graph with the help of experts, and then we obtain the first N concepts for every vertex on 
ontology graph by the algorithm and compute the precision ratio. Also, ontology 
algorithms in Huang et al. (2011a), Gao and Liang (2011) and Gao et al. (2013) are 
employed to ‘physical education’ ontology, and we compare the precision ratio which we 
get from four methods. Several experiment results refer to Table 2. 

Figure 3 ‘Physical education’ ontology O3. 
 

 

Table 2 The experiment data for ontology mapping 

 P@1 average 
precision ratio 

P@3 average 
precision ratio 

P@5 average 
precision ratio 

Our algorithm 70.97% 78.49% 92.90% 
Algorithm in 
Huang et al. (2011a) 

61.29% 73.12% 79.35% 

Algorithm in 
Gao and Liang (2011) 

69.13% 75.56% 84.52% 

Algorithm in 
Gao et al. (2013) 

67.74% 77.42% 89.68% 

The experiment results in Table 2 reveal that our algorithm is more efficiently than 
algorithms raised in Huang et al. (2011a), Gao and Liang (2011) and Gao et al. (2013) 
especially when N is sufficiently large. 

4.3 Experiment on plant data 

In this subsection, ‘PO’ ontology O4 which was constructed in 
http://www.plantontology.org (Figure 4 shows the basic structure of O4) is used to test 
the efficiency of our new algorithm for ontology similarity measuring. The P@N 
standard is used again for this experiment. We select 50 pairs of similarly vertices and  
50 pairs of dissimilarly vertices, i.e., |S| = |D| = 50. Taking slack variable parameter  
γ = 0.2. Furthermore, we apply ontology method in Wang et al. (2010), Huang et al. 
(2011a) and Gao and Liang (2011) to the ‘PO’ ontology. Calculating the accuracy by 
these three algorithms and compare the result to algorithm rose in our paper, part of the 
data refer to Table 3. 
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Figure 4 ‘PO’ ontology O4 
 

 

Table 3 The experiment data for ontology similairty measure 

 P@3 average 
precision ratio 

P@5 average 
precision ratio 

P@10 average 
precision ratio 

Our algorithm 48.63% 59.53% 74.19% 
Algorithm in 
Wang et al. (2010) 

45.49% 51.17% 58.59% 

Algorithm in 
Huang et al. (2011a) 

42.82% 48.49% 56.32% 

Algorithm in 
Gao and Liang (2011) 

48.31% 56.35% 68.71% 

When N = 3, 5, or 10, the precision ratio in terms of our algorithm is higher than the 
precision ratio determined by algorithms proposed in Wang et al. (2010), Huang et al. 
(2011a) and Gao and Liang (2011). In particular, when N increases, such precision ratios 
are increasing apparently. Therefore, the algorithm described in our paper is superior to 
the method proposed by Wang et al. (2010), Huang et al. (2011a) and Gao and Liang 
(2011). 

4.4 Experiment on humanoid robotics data 

We use humanoid robotics ontologies O5 and O6 (constructed by Gao and Zhu (2014), 
and the structures of O5 and O6 are presented in Figures 5 and 6 respectively) for our last 
experiment. The goal of this experiment is to determine ontology mapping between O5 
and O6 via similarity matrix which are deduced by Algorithm 1. P@N criterion is applied 
to measure the equality of the experiment. We only take five similarly pairs and five 
dissimilarly pairs in this experiment. Ontology algorithms in Gao and Lan (2011),  
Gao and Liang (2011) and Gao et al. (2013) are employed to humanoid robotics 
ontologies, and we compare the precision ratio which we get from four methods. Several 
experiment results refer to Table 4. 
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Figure 5  ‘Humanoid robotics’ ontology O5 (see online version for colours) 

 

Figure 6 ‘Humanoid robotics’ ontology O6 (see online version for colours) 
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Table 4 The experiment data for ontology mapping 

 P@1 average 
precision ratio 

P@3 average 
precision ratio 

P@5 average 
precision ratio 

Our algorithm 27.78% 57.41% 74.44% 
Algorithm in 
Gao and Lan (2011) 

27.78% 48.15% 54.44% 

Algorithm in 
Gao and Liang (2011) 

22.22% 40.74% 48.89% 

Algorithm in 
Gao et al. (2013) 

27.78% 46.30% 53.33% 

The experiment results in Table 4 reveal that our algorithm is more efficiently than 
algorithms raised in Gao and Lan (2011), Gao and Liang (2011) and Gao et al. (2013) 
especially when N is sufficiently large. 

5 Conclusions 

In this paper, we propose a new computation model for ontology similarity measure and 
ontology mapping application. The tricks are based on the metric distance learning and 
some new fashions are employed to get the optimal similarity matrix. At last, simulation 
data shows that our new algorithms have high efficiency in biology, physics education, 
plant science and humanoid robotics. 
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