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Abstract—Reports show that DDoS attacks are ubiquitous on
the Internet and may jeopardize networks’ stable operation.
In order to understand the nature of this threat and further
to enable effective control and management, a whole picture
of the Internet-wide attacks is a necessity. Traditional methods
use darknets to this end. However, with the IPv4 address space
exhaustion, darknets become hard to acquire. In this paper, we
seek to detect Internet-wide attacks using a live network. In
particular, we focus on the most prevalent SYN flooding attacks.
First, a complete attack scenario model is introduced according
to the positions of the attacker, the victim and the attacking
address. Then, after discussing the features of all scenarios, an
algorithm named WSAND is proposed to detect Internet-wide
SYN flooding attacks using Netflow data. In order to evaluate it,
the algorithm is deployed at 28 main PoPs (Points of Presence)
of the China Education and Research Network (CERNET) and
the total internal address space is up to 200 /16 blocks. A large
quantity of Internet-wide SYN flooding attacks detected in March
2014 is discussed in detail. With the help of the detected attacks,
a case study of detecting an internal zombie is presented.

Index Terms—Internet-wide SYN flooding attack, large-scale
deployment, live network, Netflow data, real-time detection

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks have a history
of about 25 years up to now since the first ping flooding
attack appeared in 1989 [1]. In order to avoid detection, DDoS
attacks are usually launched by botnets, which are groups
of zombies remotely controlled by attackers [2]. Zombies
are usually coded to use spoofed source addresses and each
address is only used to send part of the attack traffic. These
techniques make DDoS attacks hard to detect and defend. The
Arbor Networks’ 9th Worldwide Infrastructure Security Report
published in April 2014 shows that DDoS attacks remain to
be a worldwide threat [3]. Among all forms of DDoS attacks,
SYN flooding attack is the most prevalent one according to
the Prolexic’s 4th Quarterly Global DDoS Attack Report in
2013 [4].

As introduced above, DDoS attacks pose a serious world-
wide threat to the Internet infrastructure and key services.
A comprehensive observation of their characteristics, such as
attack locations, attack numbers, attack durations, and attack
rates, can help network operators to analyze their trend and
evaluate their possible impact on the Internet. However, it’s

a significant challenge to monitor at enough sites to obtain a
representative measure of these attacks [5].

In order to understand the prevalence of DDoS attacks
on the Internet, Moore etc. utilize darknet traffic to estimate
worldwide attacks at a single observation point [5]. A darknet
is composed of blocks of dark addresses, i.e. unused but
routable addresses. When dark addresses are spoofed to launch
attacks, they might receive responding traffic from victims.
The responding traffic is called backscatter. Through analyzing
backscatter, a large quantity of DDoS attacks can be observed,
among which SYN flooding attacks are the most prevalent
ones [6]. Nevertheless, the dark addresses are hard to obtain
since the IPv4 address space is almost exhausted. In another
word, most of the IPv4 address space is composed of live
networks [7] instead of dark ones.

In this paper, we seek to address the question: can we
observe worldwide DDoS attacks using a live network just like
what Moore did with a darknet?

As a start, we focus on detecting SYN flooding attacks.
In fact, all routable addresses can be targeted by backscatter.
Hence, backscatter packets destined to live networks can also
be used to detect attacks if they can be differentiated from
communication ones. However, corresponding to SYN flood-
ing attacks, backscatter SYN+ACK packets targeting active
addresses can hardly be identified using DPI methods. The
reason is that they are mixed with normal SYN+ACK packets
and there is little difference between them. Flow data, on the
other hand, are suitable for distinguishing them because in
flow data backscatter SYN+ACK packets become one-way
flows while normal ones are grouped into two-way flows. In
addition, flow records need less computing resources and thus
can ensure the scalability of our algorithm.

Under normal conditions, bidirectional SYN and
SYN+ACK traffic can be observed at the network borders.
This symmetric relationship could be violated under SYN
flooding attacks. Besides backscatter from external victims,
we also exploit this symmetric relationship to detect attacks
targeting or initialized by internal hosts. These attacks
also belong to the whole worldwide attack set. Especially,
WSAND possesses the following advantages compared with
works based on darknets.

• Darknets are usually fixed and can be known by attackers.
Therefore, attackers might evade them to avoid detection.978-1-4673-6762-2/15/$31.00 c© 2015 IEEE



Live networks on the contrary are hard to avoid and thus
stand a better chance to observe certain attacks.

• It detects attacks targeting inside hosts and then measures
can be taken to protect them.

• It detects attacks internal hosts participated in and the
detection results can be utilized to understand botnet
activities.

To summary, the value of our work is twofold. One is
detecting Internet-wide SYN flooding attacks at a live network
border. To the best of our knowledge, we are the first effort
to this end. We first introduce a complete attack scenario
model. Based on the model, a classification method and a
Netflow based detection algorithm called WSAND are then
proposed. WSAND has three advantages listed above. The
other is characterizing a large quantity of Internet-wide SYN
flooding attacks detected by a large-scale live network. We
deploy WSAND at 28 main PoPs of CERNET. The total
address space is up to 200 /16 blocks, whose size is close to
the UCSD Network Telescope used in [5]. WSAND can detect
attacks in a real-time fashion. We characterize the detected
attacks in March 2014 and compare part of the characteristics
with [5].

II. RELATED WORK

References [5], [8] use a method called ”backscatter anal-
ysis” to detect worldwide DDoS attacks. Based on 22 traces
captured by a /8 darknet during 2002 and 2004, 68000 attack
events are detected [5]. These attacks are analyzed from
several aspects such as attack count, attack duration, attack
type, and victim type. Inspired by this work, we seek to do
the same work at a live network border.

Different from darknets, some hosts inside live networks
can be attacked or participate in distributed attacks. These
threats should also be detected because they are part of the
worldwide attack set. This paper tries to fulfill this aim at
the network border. Several edge router-based SYN flooding
attack detection methods have been proposed over the past
few years [9]–[12]. They all exploit the different characteristics
between the attack and normal conditions. Most of them focus
on detecting attacks targeting their own network and are based
on the characteristics of TCP control packets. According to the
characteristic they use, these works can be roughly classified
into three categories.

1. SYN-FIN/RST method. References [9]–[11] detect SYN
flooding attacks by exploiting the difference between the
numbers of inbound SYN and FIN/RST packets. However,
this characteristic can be useless when attackers send SYN
and FIN/RST packets simultaneously.

2. SYN-SYN+ACK method. Reference [11] also introduces
a detection method based on the SYN-SYN+ACK pair, which
utilizes the difference between the numbers of incoming SYN
and outgoing SYN+ACK packets.

3. SYN-CliACK method. Reference [12] exploits the dif-
ference between the numbers of inbound SYN and CliACK
packets. Here, CliACK stands for the ACK packet sent by the
client in the TCP handshake process. The key is to match the

CliACK packets with the right SYN packets and [12] uses
bloom filters to this end. However, this characteristic is not
suitable for flow data.

The aim of our work is to detect Internet-wide SYN flooding
attacks at a live network border using Netflow data. According
to the above analysis, we choose the SYN-SYN+ACK pair.

III. THE COMPLETE SENARIO MODEL

A. Premises and Assumptions

This paper is edge router-based and utilizes traffic in two
directions. For a network that has multiple edge routers, traffic
from different routers should be merged first. On this basis,
we assume that traffic destined to and sent by the live network
can altogether be obtained at its border. In addition, we exploit
the TCP control information and thus flows with TCP flags are
required. Finally, we define a position function as follows:

Definition 1. For an arbitrary address g and a live network
N , g can be either outside N or inside it. Let P (g,N) = 0
denote g ∈ U −N and P (g,N) = 1 mean g ∈ N , where U
represents the entire IPv4 address space.

All addresses’ position information is stored in a table called
IP geolocation table. With the IP geolocation table, an address
can be identified as either an internal or external IP address
of N .

B. The Complete Scenario Model

We first define address-normal and address-abnormal flows
are follows:

Definition 2. If a flow’s source and destination addresses
have the same position, i.e. P (src,N) = P (dest,N), the flow
is address-abnormal. Otherwise, it’s address-normal.

Thus, flows crossing the network border can be classified
into address-abnormal and address-normal ones.

When observing them at the network border, SYN flood-
ing attacks can be further classified into eight scenarios if
the source addresses are spoofed. The division is conducted
according to the position combinations of the three-tuple
(attacker, victim, source address (SIP )). Eight scenarios are
presented below and illustrated in Fig. 1.

• S0: the position combination is (0,0,0), i.e.
attacker, victim, SIP ∈ U − N . No attack traffic
passes the border of N and the attack cannot be
observed.

• S1: (0,0,1), i.e. attacker, victim ∈ U − N , SIP ∈ N
. Only address-normal inbound single SYN+ACK packet
flows can be observed and they are backscatter from the
external victim.

• S2: (0,1,0), i.e. attacker, SIP ∈ U −N , victim ∈ N .
Address-normal inbound single SYN and outbound single
SYN+ACK packet flows can both be observed.

• S3: (0,1,1), i.e. attacker ∈ U − N , victim, SIP ∈ N
. Only address-abnormal incoming single SYN packet
flows can be observed.

• S4: (1,0,0) and it’s the opposite of S3. Only address-
abnormal outgoing single SYN packet flows can be
observed.



• S5: (1,0,1) and it’s the opposite of S2. Address-normal
outbound single SYN and inbound single SYN+ACK
packet flows can both be observed.

• S6: (1,1,0), the opposite of S1. Only address-normal
outbound single SYN+ACK packet flows can be observed
and they are backscatter from the internal victim.

• S7: (1,1,1) and is the opposite of S0. Similar to S0, the
attack cannot be observed.

(a) S0 (b) S1

(c) S2 (d) S3

(e) S4 (f) S5

(g) S6 (h) S7

Fig. 1. Eight Basic Scenarios

Since S0 and S7 cannot be detected, we only discuss six
scenarios S1 ∼ S6 in the rest of this paper. When the source
address is not spoofed, the attacker and SIP are the same
and there are only two scenarios left: S2 and S5. Note that
scenarios S3 and S4 are special because only flows in them
are address-abnormal. Traffic observed in scenarios S1 and S6

is backscatter. All observed flows are one-way flows.

IV. SYN FLOODING ATTACK DETECTION ALGORITHM

A. Scenario Features and Attack Types

Under normal conditions, bidirectional SYN and
SYN+ACK traffic can be observed at the network borders.
As introduced above, this symmetric relationship could be
disturbed under SYN flooding attacks. In order to describe

the behavior of the SYN-SYN+ACK pair, three detection
metrics are introduced below.

We break time into discrete intervals B1, B2, . . . and every
interval is called a detection period, which is set 300 seconds
long like [13]. For all one-way single SYN and SYN+ACK
packet flows in a detection interval Bi, the following metrics
are recorded: Xg

S represents the packet rate of address-normal
one-way single SYN packet flows g received, Xg

SA stands for
the packet rate of address-normal one-way single SYN+ACK
packet flows g sent and Xg

AS stores the packet rate of address-
abnormal one-way single SYN packet flows destined to g. At
the end of the interval Bi, the following anomaly detection
function is used to detect anomalies:

dTH(Xg(i)) =

{
0 ifXg(i) ≤ TH
1 ifXg(i) > TH

(1)

Here, i means the ith detection period. When a metric is larger
than the threshold TH, d = 1 and this indicates an anomaly.

Let ~D = (dTH(Xg
S(i)), dTH(Xg

SA(i)), dTH(Xg
AS(i))) be a

detection vector. It is based on the symmetry relationship of
address-normal one-way single SYN and SYN+ACK packet
flows and the number of address-abnormal one-way single
SYN packet flows. According to the last section, every sce-
nario has its own features and can be uniquely identified by
~D and P (V,N). For instance, the features of S1 are that
P (V,N) = 0 and ~D = (0, 1, 0). All scenarios’ features are
shown below in Table I.

TABLE I
SCENARIO FEATURES

Scenario P (V,N) ~D
S1 0 (0,1,0)
S2 1 (1,1,0)
S3 1 (0,0,1)
S4 0 (0,0,1)
S5 0 (1,1,0)
S6 1 (0,1,0)

According to P (V,N), the victims of scenarios S1, S4, and
S5 are all external and thus they can coexist. Similarly, S2,
S3, and S6 can coexist too. Therefore, there are altogether
(23 − 1)× 2 = 14 attack types, shown in Table II.

For two scenarios that can coexist, if their detection vectors
are not orthogonal, their combined attack type cannot be
identified by only using the detection vector. Taking S1 and S5

for example, if an IP address’s detection vector ~D = (1, 1, 0),
it may indicate a type T5. However, if Xg

SA−X
g
S > TH , this

means that the correct type is T8 = {S1, S5}. Thus, T8 can
only be identified by using an additional metric Xg

SA −X
g
S .

On the other hand, the detection vectors of scenarios S1 and
S4 are orthogonal and ~D = (0, 1, 1) only indicates a type T7.
The other combined attack types are also checked using the
same method. For simplicity, we only detect six basic types
T1 ∼ T6 and two combined types T8 and T12, marked in Table
II. The others can be combined by the above eight types. For
instance, type T7 is the combination of T1 and T4.

B. The Detection Algorithm WSAND

According to the above analyses, the attack types of an
arbitrary address g in the period Bi can be decided using the



TABLE II
ATTACK TYPES

Type Content Detect? Type Content Detect?
T1 {S1} Yes T8 {S1, S5} Yes
T2 {S2} Yes T9 {S4, S5} No
T3 {S3} Yes T10 {S1, S4, S5} No
T4 {S4} Yes T11 {S2, S3} No
T5 {S5} Yes T12 {S2, S6} Yes
T6 {S6} Yes T13 {S3, S6} No
T7 {S1, S4} No T14 {S2, S3, S6} No

following Boolean expressions shown in Table III.
TABLE III

BOOLEAN EXPRESSIONS
Type Boolean Expression
T1 ¬P (g,N) ∧ ¬dTH1

(Xg
S(i)) ∧ dTH1

(Xg
SA(i))

T2 P (g,N) ∧ dTH2
(Xg

S(i)) ∧ dTH2
(Xg

SA(i))
∧¬dTH6

(Xg
SA(i)−Xg

S(i))
T12 P (g,N) ∧ dTH2 (X

g
S(i)) ∧ dTH2 (X

g
SA(i))

∧dTH6
(Xg

SA(i)−Xg
S(i))

T3 P (g,N) ∧ dTH3
(Xg

AS(i))
T4 ¬P (g,N) ∧ dTH4

(Xg
AS(i))

T5 ¬P (g,N) ∧ dTH5
(Xg

S(i)) ∧ dTH5
(Xg

SA(i))
∧¬dTH1 (X

g
SA(i)−Xg

S(i))
T8 ¬P (g,N) ∧ dTH5

(Xg
S(i)) ∧ dTH5

(Xg
SA(i))

∧dTH1 (X
g
SA(i)−Xg

S(i))
T6 P (g,N) ∧ ¬dTH6

(Xg
S(i)) ∧ dTH6

(Xg
SA(i))

Similar to flow monitoring [14], we use a hash table to
store the detection metrics in each interval and call it the
sketch table. At the end of every interval, the sketch table
is travelled through to identify attacks, which are stored in
another hash table called the attack table. Attack statistics,
such as the victims, attack types, attack durations, and attack
rates are stored in the attack table. Based on the analyses
provided, WSAND is proposed to detect the eight types of
attacks, shown in Table IV.

TABLE IV
WSAND

Algorithm: worldwide SYN flooding attack detection algorithm
For every one-way flow record in period Bi:
Step1. If it’s the start of Bi, reset the sketch table.
Step2. Read the current flow record,
1) If it’s a single SYN packet flow, update the destination address’s
XAS(i) metric if it’s address-abnormal and XS(i) otherwise;
2) If it’s a address-normal single SYN+ACK packet flow, update the
source address’s XSA(i) metric.
Step 3. If it’s the end of Bi, travel through the sketch table and
identify attacks according to Table III.

We use different thresholds TH1 ∼ TH6 for distinct
scenarios and discuss them in the section V-A.

V. PERFORMANCE EVALUATION

Our algorithm is deployed at 28 PoPs of CERNET with
the help of a Netflow-based system named Network Behavior
Observation System (NBOS) [16] developed by CERNET. The
whole internal addresses are up to 200 /16 blocks. The server
used by every PoP is a 64-bit Linux 2.6.32 machine with two
Intel(R) Xeon(R) E5-2609 CPUs (quad core), 8GB(some only
4GB) main memory, 500GB disk, and a Gigabit NIC.

A. Parameter Configuration

According to NSFOCUS’s mid-year DDoS threat report in
2013, most attacks are short and small, and 70% of them had a
packet rate smaller than 0.2Mpps [17]. Thus we set the packet
rate threshold as TH = 0.1Mpps. Subsection III-B shows that

only part of the attack traffic passes through the border of the
live network. Assume ρ1(0 ≤ ρ1 ≤ 1) of the attackers are
inside N , and every attacker spoofs an internal address under
a probability of ρ2. If spoofed source addresses are used, then
only (1 − ρ1) × ρ2 of the attack traffic can be observed in
scenario S1. For scenario S2, the proportion is (1−ρ1)× (1−
ρ2). The proportions for scenarios S5 and S6 are ρ1× ρ2 and
ρ1×(1−ρ2). Consequently, the thresholds in the algorithm are
set as: TH1 = (1−ρ1)×ρ2×TH, TH2 = (1−ρ1)×(1−ρ2)×
TH, TH5 = ρ1×ρ2×TH, TH6 = ρ1×(1−ρ2)×TH . When
address-abnormal traffic is observed, an anomaly is detected.
Hence, set TH3 = TH4 = 0. For scenarios S2 and S5, the
source addresses may be real, the ratios are 1−ρ1 and ρ1 in this
case. We set TH2 = (1−ρ1)×TH, TH5 = ρ1×TH to avoid
possible misjudged attacks. In practice, we use ρ1 = ρ2 =
0.01 and TH1 = TH6 = 990pps, TH2 = 99Kpps, TH3 =
TH4 = 0pps, TH5 = 1Kpps.

B. Time Cost

The proposed algorithm WSAND only needs to process
one-way single SYN and SYN+ACK packet flows. Assume
that the number of these flows in a detection period is n, the
number of the related IP addresses is m, and the count of the
unexpired attack is k. The key is to design good hash functions
in the algorithm in order to reduce collision. In the worst case,
the hash tables become linked lists and the complexity of our
algorithm is O(nm+mk). In the best case, there is no collision
and the time complexity is O(n+m). The time cost in one of
the busiest PoPs–Wuhan PoP, which has an average of 10 Gbps
occupied bandwidth and a maximum of 17Gbps, is introduced
below. Among 288 detection periods (300 seconds each) on
2014-6-20, WSAND’s average and maximum time costs in
a single detection period are 1.18 and 2 seconds respectively.
The performance on the other days is similar and this indicates
that WSAND is quasi real-time.

C. Empirical Results

Under these configurations, our algorithm has been running
stably since December 2013. Attacks detected in March 2014
are discussed in detail in this subsection.

We term an attack observed by a PoP ”incident” and
207622 incidents were observed in total. Fig. 2 is the ratio
of the number of the observed incidents to the count of the
internal addresses at every PoP. We can see that location is
an important influence factor of the detection ability. This
indicates that distributed deployment is important and we
should attract other participants to join our system. Table V
shows the detected numbers of the eight incident types. The
majorities are T5 and T4 and there is no type T12 observed.

TABLE V
INCIDENT TYPES

Type T1 T2 T3 T4 T5 T6 T8 T12

Count 633 34 1 5376 199928 389 1261 0

Incidents observed by different PoPs with an identical
victim and overlapping durations are merged into a single
attack. There were 97318 attacks observed in total during
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Fig. 2. Incident Count/Address Count

March 2014. Hence, an attack was observed by 2.13 PoPs on
average. The distribution of the number of involved PoPs is
shown in Table VI, where 48.19% of the attacks are observed
by one PoP, and 15.88% are observed by more than 3 PoPs.
Attacks observed by multiple points indicate that our method
is effective. There was a maximum of 14 PoPs involved
in one attack. This attack was against 74.x.x.2, one of the
Google’s server addresses. It was observed on March 19 and
the corresponding incidents were all type T1. This indicates
that the attackers spoofed addresses inside CERNET to attack
this victim and the backscatter was observed by our system.

TABLE VI
DISTRIBUTION OF THE INVOLVED POP COUNT

#PoPs 1 2 3 > 3
% 48.19 23.54 12.39 15.88

We divide the attack duration into 5 intervals and the
distribution of the attack duration on 31 days is shown in Fig.
3. About 3139 attacks were observed every day on average.
67.25% of them last less than 10 minutes and only 8.31%
last longer than 1 hour. Compared with [5], we can see that
attacks have become shorter over the past eight years because
[5] shows that 60% of attacks last less than 10 minutes and
15% was longer than 1 hour in duration. The longest attack in
March was observed on March 5, whose duration was 200329
seconds. The attack was against 72.x.x.227, which is a server
of godaddy.com. This attack was observed by 10 PoPs and all
the incidents were type T1.

Fig. 3. Distribution of the Attack Duration

The average attack rate in every detection period is cal-
culated and we take March 1 ∼ 5 for example. The average
attack rates of the five days are shown in Fig. 4. Different from
[5], only the observed attack rates instead of the estimated
global attack rates are presented. Fig. 4 shows that attacks
during the night are generally larger than ones during the day
(UTC+8 time). The patterns of the rest 26 days were similar.

Reference [5] reports that most attacks’ observed attack rates
were smaller than 39(=10000/256) pps. In comparison, attacks
nowadays have grown much bigger. The observed largest
attack was against 202.x.x.139 on 2014-3-21. This address
belongs to Nanjing University of Chinese Medicine inside
CERNET. 6 other PoPs participated in this attack: 5 of them
observed type T5 incidents and 1 PoP observed a type T4
incident. This is a direct attack from hosts inside the six PoPs.
The rates of the attack were 1.24Mpps and 2.14Gbps and it
last about 33 minutes.

Fig. 4. Average Attack Rate (pps) in 5-minute Intervals on March 1 ∼ 5
In March 2014, 17345 victims were observed in total. Sort

them in a descending order according to their attack packet
rates. Fig. 5 shows the distributions of the average attack rate
(pps, Kbps) and the average attack duration of the victims.
There is little difference between victims’ attack durations
while 3.5K victims’ average attack rates account for 60% of
the total. These victims are further divided by their positions
into four categories: inside CERNET, domestic but outside
CERNET, abroad and unknown. The results are shown in
Table VII. The majority of the victims are domestic but outside
CERNET.

Fig. 5. CDF of Average Packet Rate, Bit Rate, and Attack Duration

TABLE VII
DISTRIBUTION OF THE VICTIM POSITION

Position CERNET domestic but /∈ CERNET abroad unknown
% 0.1 77.39 22.14 0.37

D. Internal Bot Detection

Table V shows that most of the incidents are type T5,
which means that internal hosts launched these attacks and
the source IP addresses are also inside the network. These
source addresses may be real or spoofed. According to our
observation, many type T5 attacks were launched only by 1 or
2 addresses and some of these addresses keep attacking dif-
ferent destinations. We speculate that some bots may use their



own addresses to sent attacks. For example, host 219.x.x.251
inside Nanjing PoP launched 53 type T5 attacks over eight
days. We captured its bidirectional packets and try to tell if it’s
infected. According to our observation, this address is indeed
a bot. Part of the captured packets are shown in Fig. 6. Packet
8 is the control packet sent by the controller 183.x.x.215 and
it contains the target’s address 117.x.x.138. Once received this
packet, the bot launched a type T5 SYN flooding attack against
the target. However, the source addresses of some other type
T5 attacks are spoofed. In future, we will make efforts to
identify internal bots in an automatic way in order to prevent
DDoS attacks from the source.

	
  
Fig. 6. A Screenshot of the Captured Packets

E. Validation

In order to validate the correctness of WSAND, we man-
ually check if there are corresponding attacks in the packet
level trace. We obtain the packet trace captured by the Jiangsu
PoP on 2014-11-09 from [15]. Because the IP trace only
monitors 1/4 of the inner address space, among 307 incidents
detected by WSAND on that day, only 80 of them can be
monitored. The others are all type T5 and are initialed by 1or
2 inner addresses which are not monitored by the packet trace.
For the 80 incidents that can be monitored, 74(92.5%) are
correctly detected by WSAND. According to the packet trace,
one outstanding feature is that most of them are attacks against
port 80 with a packet length of 936 or 1047 bytes. For the other
6 incidents, only SYN+ACK packets are captured but WSAND
indicates they are all type T5 attacks. One possible explanation
is that type T5 actually happened but in the other 3/4 inner
address space which are not monitored by the packet trace.
The other is that WSAND misjudged normal SYN packets
into attack ones. We plan to capture packet traces of the whole
inner space for a more thorough validation in future.

VI. CONCLUSION AND FUTURE WORK

According to the position of (the attacker, the victim, the
attacking address) 8 scenarios and 14 types of the SYN
flooding attacks are introduced. Based on every scenario’s
unique features, we propose a Netflow based detection algo-
rithm named WSAND to detect Internet-wide SYN flooding
attacks. To evaluate its performance, WSAND is deployed at
28 main PoPs of CERNET. A large quantity of worldwide
SYN flooding attacks is detected in a real-time fashion. We
can see that:

• Similar to darknets, backscatter can also be observed at
live network borders and used to infer attacks.

• Attacks targeting inside hosts can be observed.
• With the help of the detected attacks, internal zombies

who use real addresses to initial attacks can be discov-
ered.

• Our observation indicates that:
– 67.25% of the attacks last less than 10 minutes and

only 8.31% last longer than 1 hour. Compared with
[5], attacks nowadays become shorter.

– Attacks during the night are generally larger than
ones during the day (UTC+8 time). Compared with
[5], attacks have become much bigger since 2006.

– 77.39% of the victims are domestic but outside
CERNET and 22.14% are abroad.

Based on the NBOS system, we also observed a large
quantity of UDP flooding attacks, CHARGEN (port 19), NTP
(port 123), and DNS (port 53) reflection attacks. In future,
we will systematically analyze and describe these attacks. In
addition, a differential threshold configuration mechanism will
be established for popular and regular hosts.
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