

�
��������������� ����	

�� ��
���	��� ����	

��	���������������� ���

����	��	� ������	���� ��	�	���� ����	�� ����� ����� �����������
��	
������ 	����	���	

������� ������	� ����
	�� ���������	��� ����
��������������������
����
������	�������
	��������������� �
�����
 �����! ��������� �� ����� �������� �	�����
	������� ��	���� ���
 �	�
���
��
������	�����	������������� ���������������"����
	
������� ��
	�	
�#��������	!��������	����
	��������������
�������������
����
�
����������������� ����������	�� ���	
� ������������ 	���� ����

��
�����	��	��	�
 �� ����	�����	
�� ���������� ������� ������� �����
��	�����
 	����������	���
���� ���	�� �����$����	
�	�� ���������
�
������ ��	
���	�� � ��
����� �������%&'(&" � �	�������
�� ��	� ��
��������	����� ����
 ������ ������������������ 	

��	��� ���
���
	���������
�����������������
�����������	�����
	��������
	
��
���� �(�������)�	� ���������"�	�� ��� *	������� �	�	�

)�������

I.� INTRODUCTION
There is an essential need for a network manager to possess the
structure of traffic mix that is taking up our limited bandwidth.
A comprehensive knowledge of such traffic characteristics is
naturally the premise of optimizing, deploying and managing
network resources. Analysis over raw traffic data is require to
extract better insight which is supposed to yield more
meaningful report to manager.

Eventually, there is an inherent contradiction between the
level of detail provided by traffic data and the capacity of
humans to absorb knowledge beneath that detail. Packet-level
information does reflect all what is happening on network but it
at the same time almost tells little useful message that we
probably want more. A good traffic report is expected to
present a global summarization in a time-saving manner that
will potentially stop the manager from “hunting for needles”.
Mining traffic aggregation could be used as one feasible
solution. It is vitally important for applications in detecting
DoS attacks, traffic management, and network security to
real-time automatically identify traffic patterns in backbone
networks with high speed links carrying large numbers of flows.
Our objective is to determine traffic patterns that use up a
disproportionate fraction of network resources.

We take those significant traffic patterns whose traffic
volume exceeds a pre-defined fraction of the total traffic as a

This work was supported by the National Grand Fundamental Research 973
program of China under Grant No. 2009CB320505, the National Nature
Science Foundation of China under Grant No. 60973123, the National Science
& Technology Pillar Program during the eleventh five-year plan period under
Grant No. 2008BAH37B04, and the Nature Science Foundation of Jiangsu
Province under Grant No. BK2008288.

Guang CHENG is a professor of the School of Computer Science and
Engineering, Southeast University, Nanjing, 210096, PRC. His office phone:
86-25-83794000; fax: 86-2583614842; e-mail: gcheng@njnet.edu.cn.

summarization of traffic mix because they are dominant
resource consumers. This paper first analyzes the major time
and space cost in computing high volume clusters under
different hierarchical structures, and then proposes a variable
hierarchical structure to identify network traffic patterns in a
top-down fashion. We evaluate our model using real trace files
from the CERNET backbone link.

The rest of the paper is organized as follows. We describe
related work in Section II. Section III defines the clusters and
their properties which are chosen to do traffic patterns. We
describe the variable hierarchical algorithm we use in Section
IV. Experimental evaluation based on the proposed method is
presented in Section V. The conclusion is given in Section VI.

II.� RELATED WORK
 C.Estan in [1] proposed an offline algorithm that

aggregates traffic over hierarchical domain which is built in
terms of set inclusion on every individual dimension from the
“five-tuple definition” of network flow. Instead of using
individual flows or other predefined aggregates, they
dynamically define traffic clusters, so that any meaningful
aggregate of individual flows is a traffic cluster. The difference
with ours is that their algorithm is considered as an offline
system instead of a real-time one. Wang in [2] concluded that
the major computational overhead of Estan’s algorithm is spent
on potential sorting operation while building the hierarchical
tree from leaves to root because there is an inevitable need to
put all leaves in order before actual building procedure. To
eliminate the need for potential sorting, Wang improved
Estan’s approach using a top-down way to build the whole
hierarchy tree and each node maintains a set of flows that the
node covers. However, their strategy limits the search range
during the creation of all child nodes that belong to a same
parent.

Zhang and P.Truong in [3] and [4] proposed similar
real-time online approximate algorithms. A “split threshold” is
introduced to suppress the growth of hierarchical tree. Each
arriving flow will at most cause one counter update and one
new node creation so the overall algorithm cost is decreased. In
2005, Ken Keys[5] computes multiple summaries to aggregate
the flows according to the source IP, the destination IP, the
source port and the destination port. In 2008, Cheng [6] gave an
algorithm to detect superspreaders adaptively on different
sampling probabilities, which is used to maintain those
recorded IP addresses in a limited memory. These algorithms
only provide traffic summaries, but do not keep any original
flow information as Cisco NetFlow [7] does.

Real-Time Inferring Network Traffic Patterns
Guang CHENG

The 8th Annual IEEE Consumer Communications and Networking Conference - Security and Content Protection

978-1-4244-8790-5/11/$26.00 ©2011 IEEE 457

III.� PROBLEM SPECIFICATION
Let },,,{ 321 ������ be an input stream of flows that arrive
sequentially. Each item),(��� ���� consists of a key �� and
a positive volume update ��� � . Associated with each k is a
volume counter A[k]. Every new arrival of flow),(�� �� will
cause volume counter A[k] to be updated: ��� ����� ��][][.
�����������+ �,-� ���.�
����%
�� ���/: Given a set of

incoming flows },,,{ 321 ������ (multi-set) with a total

traffic volume ��
� ����	 and a threshold)10(�	

 . Let

� �
�

):(��� �� �
�
 denote the traffic volume associated with key k

in flow set S, a high-volume cluster is defined as
}|{ ��	
� � ��
 .

�����������0�,-���	���� �	
�-����.�
����%
�����/: Given
a set of incoming flows },,,{ 321 ������ whose keys ��
are drawn from a hierarchical domain D of height h. For any
prefix p in hierarchy D, let),(��
�
	 be the set of elements

that descendents of p. Let),(:),(��
�
	�
��

� � �� �

denote the total traffic volume associated with prefix p. The set
of Hierarchical High-Volume Clusters is defined as a set of
prefixes }),(|{ ��	��
� ��
 .

In the conventional five-tuple flow definition, source and
destination IP dimension can naturally form a hierarchy domain

����	 in terms of IP prefix whose leaves are individual IP
addresses. For port and protocol dimensions, simple hierarchies
are used to reflect inherent semantics. The goal of
unidimensional traffic aggregation is to breakdown total traffic
along hierarchy domains and to identify all high-volume
clusters.

Tree can be used to express the logical structure of
hierarchical domain. Every node in the hierarchy tree is
associated with a set of flows that share same semantic
importance. The root of hierarchy tree represents all possible
values on this dimension. All leave nodes are associated with
individual value on this dimension. Internal nodes between root
and leaves are intermediate results while doing the aggregation.
The sets denoted by two nodes are disjoint unless one of the
nodes is a parent of the other.

We can find all high-volume clusters of a dimension by
maintaining the entire hierarchical domain in memory and then
traverse each node to see if it is above the threshold. This
approach works for simple dimensions such as port and
protocol dimension because the hierarchies are small. However
IP dimension covers a 32-bit space, it is not possible to fit it all
into precious measurement resource. A practical solution is to
maintain a hierarchy tree containing only individual IP and
their ancestors along the paths to root. The scope of this partial
hierarchy domain is acceptable in real scenario.

Estan, based on this idea, presented in [1] his unidimensional
aggregation algorithm on IP address dimension. Estan’s
algorithm is divided into two phases. First we traverse all
individual flows in raw traffic and create leave nodes in the

hierarchy. Merge is required if a second flow of a same IP
address is found to ensure the uniqueness. The complete
hierarchy tree is built according to prefix relationship among
individual flows by the end of this pass. All leave counters are
set to their actual traffic and the counters of internal nodes are
set to 0. In the second phase of algorithm, a post-order traversal
is applied to hierarchy tree to set the traffic counters of all
internal nodes to the sum of their descendents. High-volume
clusters are identified as the traverse process leaves a node.

Prefix length increases by 1 bit as hierarchy depth drills
down every layer. So a binary tree could be used to maintain
such hierarchical relation. In Estan’s algorithm, prefix length
changes from 8 bit to 32 bit. With a root node that directly
connects to /8 prefix, the depth of hierarchy tree is 26. The cost
of keeping every node of hierarchy tree in memory is expensive.
The major time cost consists of the creation of new nodes and
the counter update operation. This binary tree storage strategy
keeps cluster and its corresponding traffic at any prefix length.
The total number of nodes in binary tree could be very large,
but the advantage of this approach is when we attempt to access
any internal node we do not need to compute its actual traffic.
We can extend this binary tree structure to k-tree, so the change
of prefix length increases accordingly.

Let ����� be the number of descendent of a given node, ���
�
be the depth of hierarchy tree. Because the number of all leave
node is equal to IP address space, so)/32(2 ���
������ � . All
possible combinations of ������and ���
� are listed in Table 1.

TABLE 1: POSSIBLE LAYER AND CHILD COMBINATION
layer child
32 2
16 4
8 16
4 256

Analyze a direct approach to traffic aggregation problem: If
all child and layer parameters are given, then all nodes (if not
existed) are created and updated their corresponding traffic
counter (if already existed or being created) along the path from
root to leaf. An example which includes 2 flows:
202.112.25.69(100) and 202.112.23.167(80) that arrived
sequentially is illustrated in Figure 1 below. This example
shows how the creation and update operation work. Colored
node in the Figure suggests that node is newly created.

Figure 1 A Example of the Algorithm

We obtain the following algorithm time and space

performance results through experiment using continuous

458

Netflow data split into five-minute grain staring from 09:00 to
09:20 Jul 15th, 2009 in Figure 2. Processing time of our direct
approach generally rises as the aggregation layer increases.
There is a prominent exception when layer changes from 4 (256
descendents per node) to 8 (16 descendent per node). It is
because the creating a new node takes much more time than
updating the traffic counter. Though the number of traffic
counter that needs update when layer grows from 4 to 8 doubles,
the actual time of creation reduces by a large scale because
some of the nodes along the path are probably already existed
due to previous arriving flows. The individual addresses
appeared in our raw traffic are usually concentrate to several
active subnets so the collision happens a lot, in fact. As a result,
the process time is brought down to a decreased tendency. By
carefully examining the graph, we can also discover that
processing time only increased by less than 50% when layer
jumps from 4 to 32 exponentially. This also proves creation is
far slower than updating from another angle. From this fact
reflected from our experiment we can learn that during the
aggregation, creating new node takes up most of the running
time, updating traffic counter has little effect to overall
algorithm processing time.

Figure 2 Processing Time among different Aggregation Layers Algorithm

Figure 3 Memory Usage among different Aggregation Layers Algorithm

The memory usage of our direct approach shows general

lowering trend as the child count decreases from 256 to 2 in
Figure 3. Fewer aggregation layer reduces internal nodes
between leaf nodes and root, but the side-effect also leads to
more empty field in link list which used to maintain adjacency
relationship of parent and child. For instance, only 0.8% of
algorithm’s committed memory is used to store available data
while the rest is totally wasted on empty link when a node has
256 descendents; for the binary case, average memory
utilization ratio rises drastically to 55% though the number of

internal node is much larger the former condition. The result is
listed in Table 2 below concerning memory usage against layer
and child combination according to experiments using 5
minutes Netflow data from 09:00 to 09:05 on Jul 15th, 2009.
This sample contains 31622 flow records after merge.

TABLE 2: MEMORY USAGE RATIO AMONG DIFFERNET AGGREGATION LAYERS

Number of
Aggregation
layers

Sub-node
Number of
each layer

intra-nodes effective
pointers

usage
ratio

4 256 27422 59043 0.008411
8 16 69732 101353 0.090842
16 4 154775 186396 0.301076
32 2 325092 356713 0.548634
The prefix length grows by one-bit in Estan’s algorithm. In

other words, each node has at most two descendents. This
layout can improve the memory efficiency. While doing the
traffic aggregation, a post-order traversal method is introduced
to avoid unnecessary counter update other than updating all
counters along its path. As we demonstrated above, access a
node and update its traffic counter press little influence on
overall processing time. So adopting a post-order traversal
strategy to reduce time of update actually does not bring as
much benefit as we expected it will. Next, all leaf node has to
be created before building the entire hierarchy tree, this
restriction will cause two other problem. First, lots of
processing time is spent on creating internal nodes, though we
introduce post-order traversal to prevent redundant access, the
major time and space cost is not well coped with at all. Second,
among all nodes in hierarchy tree, only a very small amount of
them are high-volume clusters. It is very unnecessary to keep
all internal nodes in the memory and take care of them during
the algorithm.

According to the two reasons above, this article proposed a
top-bottom iterating algorithm for unidimensional traffic
aggregation. The general time and space performance can be
largely improved by avoiding the creation of all
non-high-volume clusters. In section 4, this algorithm will be
discussed in detail.

IV.� VARIABLE HIERARCHY ALGORITHM
Our algorithm uses a similar hierarchy tree structure to the

one in Estan’s paper. The root node in the hierarchy has 256
descendents which connects directly to 256 /8 prefixes sub-tree.
Each sub-tree is a binary tree. The depth of the hierarchy tree is
26. Unlike Estan’s approach, our algorithm splits up total
traffic from top to bottom. Only high-volume clusters are left in
the hierarchy once the algorithm finishes executing.

Hash table is used to collect all incoming flows. During this
stage, replicated flows are merged and the number of individual
IP is counted. When we finish the initial work, all flows records
in hash table are dumped into a list and sorted using its IP
address field as the sorting key. Flows that belong to any given
prefix will be stored one after another because the sorting will
put successive IP addresses together in order. Note the extra
sorting procedure will not increase the total running time of our
algorithm. This is because no matter which direction,

459

top-bottom or bottom-top, you decide to build the hierarchy
tree, there is always a potential cost for sorting all flows in
order hidden in the algorithm. Take Estan’s approach as an
example, when we create all leaf nodes, sorting is still
necessary so that we are able to build the hierarchy upon these
scattered individual leaf nodes. In our earlier direct approach
though we do not need to sort individual flows in advance, but
after the hierarchy is built all leaf nodes are in an ordered status.
The cost for sorting are diluted to determine the “walking path
from root to leaf” for every arriving flow. The same truth
applies to any other offline aggregation method. We can
conclude that sorting cost is inevitable regardless which
method you choose. Besides, we found sorting merely
consumes a small portion of all processing time through
experiment.

In addition, we can employ some optimizations to sorting.
While we are counting the number of individual IP address, in
the meantime we can record the distribution of all flows on
each /8 prefix (0.0.0.0/8-255.0.0.0/8). When dumping
individual flows from hash table, we can directly put a flow to
the segment in Figure 4 (a relative position) according to /8
prefix it belongs. Let)}(|{ ���
������������ �� be the

number of individual flow in prefix i.0.0.0/8, �

�
�

1

0

�

� �� �� be

the accumulated distribution of each /8 prefix. Every incoming
flow is inserted sequentially at the position starting from �� .
After the dumping completes, all flow are placed in ordered
relatively on /8 prefix level.

Figure 4 Record a Flow to the flow buffer

Then a quick sort is applied to every /8 prefix segment in the
list. The index of flows that belong to prefix i.0.0.0/8 in flow
list range from �� to 11
��� . The number of flows in each /8
prefix is �� . Let A be the total amount of individual IP, then

� �
�

255

0� ��� . Because the time complexity of quick sort is

)log(��� , so the overall cost for quick sort on all /8 prefix

segments is ������
� �� �� loglog]log[��	� �� .

It is faster than sorting the whole flow list. Furthermore, by
analyzing the /8 prefix distribution in raw traffic data captured
on the border router of JSERNET, we found less than 2% of all
/8 prefixes whose total occurrence is over 50%. For five-minute
Netflow data (sampling rate 256), the total occurrence of over
70% /8 prefix is below 1000 on average. Because the efficiency
of various sorting algorithms largely depends on the quantity of
input data, we can use different sorting methods according to
changing input data amount.

Let)1(�
�
� ��� �� denote the volume of kth flow. The

volume)(�
 of a given prefix p can be easily computed as
�
�

�

 ���

�)(via two random memory accesses and a

subtraction. Figure 5 give an example to compute the volume of
the 202.112.25.0/24 prefix.

Figure 5 Compute the volume of the 202.112.25.0/24 prefix

Algorithm allocates memory needed for maintaining
high-volume clusters all at once before we start. Because the
traffic of each node at a certain level in hierarchy tree does not
overlap with others, there are at most � �
/1 high-volume
clusters for all levels. As the prefix length changes from 8 to 32,
the maximum number of high-volume cluster for a given
threshold
 is at most � �
/125� . That is far less than the
number of nodes contained in an entire hierarchy tree. A 2-d
matrix of size � �� �
/1,25 is allocated to maintain all
high-volume clusters and an array of 25 elements is also
allocated to indicate the last position on each level of
high-volume cluster cache. For every element in high-volume
cluster cache, we keep its prefix, prefix length, start and end
flow index in sorted flow list, its traffic volume and the pointers
to its descendent in the next level of cache.

Our algorithm first checks every /8 prefix, writes it into the
first level of high-volume cluster cache if its traffic exceeds the
threshold. The algorithm then proceeds with high-volume
clusters found in the first layer. For each high-volume cluster,
our algorithm increases prefix length by 1 bit and attempts to
check the traffic volume of its descendents (if any). It iterates
through level to level until all high-volume clusters are found.
Due to this top-bottom iteration manner, if the traffic volume of
a given prefix does not exceed threshold, all of its descendents
will not be examined later. The time and memory overhead are
greatly reduced compared with an entire hierarchy tree,
because the number of high-volume clusters is much smaller.
Figure 6 gives the fast aggregation algorithm.
1.� layer = 1;
2.� for i = 0 to 255
3.� if(volume(Di, Di+1-1) >=�.sum)
4.� add_hv(HH[layer, last[layer]++]);
5.� endif
6.� endfor
7.� for layer = 1 to 25
8.� child = layer + 1;
9.� for current = 0 to last[layer]
10.� pivot = find_pivot(HH[layer, current].s, HH[layer, current].e, child);
11.� if(volume(HH[layer, current].s, pivot)>=�.sum)
12.� add_hv(HH[child, last[child]++]);
13.� endif
14.� if(volume(pivot+1, HH[layer, current].e) >=�.sum)
15.� add_hv(HH[child, last[child]++]);
16.� endif
17.� endfor
18.� Endfor

Figure 6 Mining Traffic Patterns Algorithm

460

A fragment of algorithm example is shown below. Suppose
the high-volume threshold is 100. 10.8.0.0/28 is a high-volume
cluster in the cache, the algorithm is iterating through it and is
about to check its descendents. Prefix 10.8.0.0/28 contains 8
individual IP in sorted flow list, whose traffic volume are
labeled in Figure 7. When computing the two descendents of
10.8.0.0/28, these 8 individual flows are divided into two /29
prefix and their traffic volumes are checked.

Figure 7 A Prefix 10.8.0.0/28 Example

V.� EXPERIMENT
In this section we make a comparison concerning the

processing time in Figure 8 and memory usage in Figure 9
between our algorithm and Estan’s method through experiment
using real traffic data captured on JSERNET border. The
advantage of our fast unidimensional aggregation algorithm
which is attained by avoid creating non-high-volume cluster is
demonstrated in the comparison.

The test suit contains 12 five-minute netflow data in V5
format which is export by the router on 8am Jul 15th, 2009
spanning one hour. The total processing time suggests their
quantitative relation. The processing time of our fast
unidimensional aggregation algorithm consists of sorting and
aggregation cost. A large portion part of total processing time is
spent on sorting; finding high-volume clusters can be
accomplished in a very short time.

Figure 8 Processing Time Comparison among different Algorithms

The memory usage for high-volume cache in our algorithm
is a function of high-volume threshold, so it is of fixed size for
any given threshold; the memory that used to store sorted flow

is equal to all leaf nodes in Estan’s algorithm. All memory used
for unnecessary non-high-volume clusters which cover almost
all internal nodes are saved.

Figure 9 Memory Usage Comparison among different Algorithms

VI.� CONCLUSION
It is a most complicated condition to cluster traffic patterns

on IP dimension, so it takes most time to run in traffic
clustering problem. By analyzing the time and space
performance of a simple direct paradigm of aggregation
algorithm we concluded that the major resource consumption is
spent on creating all internal nodes, in which only very small
portion is actual high-volume cluster. Sorting operation is
introduced in our algorithm. The general time and space
performance is greatly improved by avoiding the creation of all
non-high-volume clusters in a top-down hierarchical algorithm.

REFERENCES
[1]� Cristian Estan, S. Savage, and G. Varghese. Automatically Inferring

Patterns of Resource Consumption in Network Traffic. in Proceedings of
ACM SIGCOMM, 2003.

[2]� Jisheng Wang, David J. Miller, and George Kesidis, Efficient Mining of
the Multidimensional Traffic Cluster Hierarchy for Digesting:
Visualization, and Anomaly Identification, IEEE J. Selected Areas of
Comm., Vol 24, No. 10, pp. 1929-1941, Oct. 2006.

[3]� Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick Duffield, Carsten Lund,
Online Identification of Hierarchical Heavy Hitters: Algorithms,
Evaluation, and Applications, In Internet Measurement Conference,
Taormina, Italy, October 2004.

[4]� Patrick Truong, Fabrice Guillemin, A Heuristic Method of Finding Heavy
Hitter Prefix Pairs in IP Traffic, IEEE Communications Letters, Vol. 13,
No. 10, pp. 803-805, Oct. 2009.

[5]� Keys K, David M, Estan C, et al. A Robust System for Accurate Real-time
Summaries of Internet Traffic, ACM Sigmetrics 2005, June 6-10, 2005,
Banff, Alberta, Canada.

[6]� CHENG Guang, GONG Jian, DING Wei, WU Hua, Adaptive sampling
algorithm for detection of superpoints, Science in China Series F:
Information Sciences, vol. 51, no. 11: 1804-1821, 2008.

[7]� C Estan, K Keys, D Moore, G Varghese, Building a better NetFlow, ACM
Sigcomm 2004, Aug. 2004.

461

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

