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Abstract. Routers have the ability to output statistics about packets
and flows of packets that traverse them. Since however the generation of
detailed traffic statistics does not scale well with link speed, increasingly
passive traffic measurement employs sampling at the packet level. Packet
sampling has become an attractive and scalable means to measure flow
data on high-speed links. However, knowing the number and length of the
original flows is necessary for some applications. This paper provides an
algorithm that uses flow statistics formed from sampled packet stream
to infer the absolute frequencies of lengths of flows in the unsampled
stream. We achieve this through statistical inference and by exploiting
heavy-tailed feather. We also investigate the impact on our results of
different packet sampling rate. The experiment results show the inferred
distributions are accurate in most cases.

1 Introduction

With the rapid increase of network link speed, packet sampling has become
an attractive and scalable means to measure flow data. However, knowing the
number and lengths of the unsampled flows remains useful for characterizing
traffic and the resources required to accommodate its demands. Here are some
applications: Resources Required for Collecting Flow Statistics: flow cache uti-
lization and the bandwidth for processing and transmitting flow statistics are
sensitive to the sampling rate, the number of flows, and flow lengths and du-
ration; see [1,2]. Characterizing Source Traffic: the measured numbers of flows
and the distribution of their lengths have been used to evaluate gains in deploy-
ment of web proxies [3], and to determine thresholds for setting up connections
in flow-switched networks [4]. Sampling entails an inherent loss of information.
We expect use statistic inference to recover information as much as possible.
However, more detailed characteristics of the original traffic are not so easily
estimated. Quantities of interest include the number of packets in the flow–we
shall refer to this as the flow length–and the number of flows with fixed length.

1.1 Related Work

Kumar et al proposed a novel SCBF that performs per-flow counting without
maintaining per-flow state in [5] and an algorithm for estimation of flow size
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distribution in [6]. Its disadvantage is that all packet must be processed due to
not using sampling. Hohn and Veitch in [7] discussed the inaccuracy of estimating
flow distribution from sampled traffic, when the sampling is performed at the
packet level.

Although sampled traffic statistics are increasingly being used for network
measurements, to our knowledge few studies have addressed the problem of
estimating flow size distribution from the sampled packet stream. In [2], the
authors studied the statistical properties of packet-level sampling using real-
world Internet traffic traces. This is followed by [8] in which the flow distribution
is inferred from the sampled statistics. After showing that the naive scaling of the
flow distribution estimated from the sampled traffic is in general not accurate,
the authors propose an EM algorithm to iteratively compute a more accurate
estimation. Scaling method is simple, but it exploits the sampling properties of
SYN flows to estimate TCP flow frequencies; EM algorithm does not rely on
the properties of SYN flows and hence is not restricted to TCP traffic, but its
versatility comes at the cost of computational complexity.

1.2 Some Elementary Concepts

This paper considers sampling some target proportion p = 1/N of the packet
stream. There are a number of different ways to implement this. Implementations
include independent sampling of packets with probability p = 1/N , and periodic
selection of every N th packet from the full packet stream. In both cases we
will call N the sampling period, i.e., the reciprocal of the average sampling
rate. Although the length distributions by random and periodic sampling can be
distinguished, the differences are, in fact, sufficiently small [8]. A flow is defined
as a stream of packets subject to flow specification and timeout. When a packet
arrives, the specific rules of flow specification determine which active flow this
packet belongs to, or if no active flow is found that matches the description
of this packet, a new flow is created. A TCP flow is a stream of TCP packets
subject to timeout and having the same source and destination IP addresses,
same source and destination port numbers. Similarly, a UDP flow is a stream
of UDP packets associated with above specification. A general flow is a stream
of packets subject to timeout and having the same source and destination IP
addresses, same source and destination port numbers(not considering protocol).
In this paper, we will use the term original flow to describe the above flow. A
sampled flow is defined as a stream of packets that are sampled at probability
p = 1/N from an original flow.

1.3 Contribution and Outline

This paper presents a novel algorithm for estimation of flow size distributions
from sampled flow statistics. Our method is available not only to TCP flows but
also to general flows. We complete this work using four approaches. The first
formalizes the probability distribution of original flow length of a sampled flow
length j. The second classifies two types of flows based on their probability that
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no packet is sampled. A flow is labeled as small (S) when it’s probability that no
packet is sampled is more than ε and as large (L) when it’s probability that no
packet is sampled is less than or equal to ε. The third gives a simple estimation
method for large flows. The fourth uses maximum likelihood estimation and EM
algorithm to estimate the full distribution of small flows.

The rest of this paper is organized as follows. In Section 2 we analyze the
probability models of the original flow length distributions of a sampled flow
under the assumptions of Pareto distributions. In Section 3, we classify two
types of flows: small flow and large flow. Then we present different estimation
methods for small flows and large flows, respectively. In Section 4 we discuss the
computational complexity of our method. Furthermore, we compare our method
with EM algorithm in estimation accuracy and computational complexity. We
conclude in Section 5.

2 Probability Distribution of Original Flow Length

For a specific original flow F , let XF denote the number of packets in F ,
YF denote the number of packets in the sampled flow from F . The condi-
tional distribution of YF , given that XF = l, follows a binomial distribution

Pr[YF = k|XF = l] = Bp(l, k) =
(

l
k

)
pk(1 − p)l−k. By the conditional proba-

bility formula,

Pr[XF = x|YF = y] =
Pr[YF = y|XF = x]Pr[XF = x]

Pr[YF = y]
(1)

and by the complete probability formula,

Pr[YF = y] =
∞∑

i=y

Bp(i, y)Pr[XF = i] (2)

We know that flow length distributions have the property of being heavy-tailed.
Pareto distribution is the simplest heavy-tailed distribution; its probability mass
function is

Pr[XF = x] = βαβ/xβ+1, α, β > 0, x ≥ α (3)

where β is called Pareto parameter. Hence Equation (2) can be written as:

Pr[YF = y] =
∞∑

i=y

Bp(i, y)βαβ/iβ+1, y ≥ α

Lemma 1. Under the assumption that original flow lengths satisfy Pareto dis-
tribution, the probability that a sampled flow of length y(≥ α) is sampled from
an original flow of length x is

Pr[XF = x|YF = y] =
Bp(x, y)/xβ+1

∞∑
i=y

Bp(i, y)βαβ/iβ+1
.
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To describe the properties of the above probability, apply different values of
p and β to calculate the probability of Lemma 1. And for fixed p and β, for
each y(≥ α), we find x such that the above probability Pr[XF = x|YF = y] is
maximized. We have

Lemma 2. Under the assumption of Lemma 1, for fixed p = 1/N, β and y(≥ α),
the probability Pr[XF = x|YF = y] is maximized at x = Ny − n(p, β). It is
increasing as x increases for x < Ny − n(p, β) and decreasing as x increases for
x > Ny − n(p, β).

Here n(p, β) is a binary function with variables p and β whose value domain is
integer set. Function n(p, β) has the following properties:

1) It is a monotone decreasing function on variable p, that is , for fixed β, is
decreasing as p increases.

2) It is a monotone increasing function on variable β, that is , for fixed p, is
increasing as β increases.

For example, n(0.1, 0.5) = 14, n(0.1, 1.0) = 18, n(0.1, 1.5) = 23. In the con-
cerned network, the length distributions of flows collected in any time interval
do not satisfy Pareto distributions with fixed parameter strictly, but they can
follow a Pareto distribution with parameter in interval [0.5,1.5] approximately.
The value 1.0 is the middle value of interval [0.5,1.5] exactly. Therefore, to com-
pute the conditional probability we assume that original flow length has a Pareto
distribution with parameter 1.0 a priori distribution.

3 Estimation Method of Flow Length Distributions

3.1 Flow Classification: Large Flow and Small Flow

Let g = {gj : j = 1, 2, · · · , n}, where gj is sampled flow frequencies of length j,
be a set of sampled flow length frequencies, f = {fi : i = 1, 2, · · · , n, · · ·} a set of
estimated original flow length frequencies. Consider sampling the packets of an
original flow of length Nj independently with probability 1/N , the probability
that no packet is sampled is (1 − 1/N)Nj = ((1 − 1/N)N)j . {(1 − 1/N)N} is
increasing in N and lim

N→∞
(1 − 1/N)N = 1/e < 0.37. Thus for a given error ε,we

require (1−1/N)Nj < (1/e)j < ε and choose jbord ≥ max(j(ε) = �log(1/ε)�, α).
For example, j(0.01) = 5, j(0.001) = 7. We classify two types of flows based on
their probability that no packet is sampled. A flow is labeled as small (S) when
it’s probability that no packet is sampled is more than ε and as large (L) when
it’s probability that no packet is sampled is less than or equal to ε.

3.2 Estimation for Large Flow

For a sampled flow of length j > jbord, by Lemma 2, the original flow length
values of the 2N relatively large probabilities are N(j−1)−n(p, β)+1, · · · , N(j+
1) − n(p, β) where β = 1.0. We estimate the sampled flow is sampled from one
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of the 2N original flows. Then there are gj

2N sampled flows that are sampled
from one of original flows of the above lengths in gj(j > jbord) sampled flows.
Therefore, for all large flows of length i > Njbord, we have

fi =
1

2N
(gj + gj+1), where j = �(i + n(p, β) − 1)/N�. (4)

3.3 Likelihood Function of Small Flows

For all small flows of length i ≤ Njbord , we estimate as follows:

gj =
m∑

i=j

Bp(i, j)fi (5)

where m = max{i : fi �= 0}. For i > Njbord, substituting (4) into Equation (5):

gj = gj −
m∑

i=Njbord+1

Bp(i, j)fi =
Njbord∑

i=j

Bp(i, j)fi, j = l, · · · , Njbord. (6)

Because some solutions of Equations (6) may be negative, we don’t solve the
equations directly. We construct MLE and employ EM algorithm to compute
the solutions of Equations (6). For the above some gj ≤ 0, we replace it with
δgi−1, 0 < δ < 1 . Below we only consider all small flows of length 1, · · · , Njbord.
Let γ =

∑i=Njbord

i=1 gi, and let φi denote the frequencies of original flows of
length i conditional on at least one of its packets being selected. Our aim is
to estimate φ = {φi}, i = 1, · · · , Njbord and

∑
i φi = 1, from the frequencies

{gi}. We now derive an expression for log-likelihood L(φ)to obtain gi given φ.
Here, cij = Bp(i, j)/(1 − Bp(i, 0)) is the probability that packets are sampled
from a flow of length i,conditional on j ≥ 1 , i.e., that the flow is sampled. For
any j , the function is (

∑
i=j φicij)gj . Hence we obtain the likelihood function∏Njbord

j=1 (
∑

i≥j φicij)gj . Therefore the logarithm of likelihood function is

L(φ) =
Njbord∏

j=1

gj log
∑
i≥j

φicij (7)

where cij = Bp(i, j)/(1 − Bp(i, 0)). We wish to maximize L(φ) subject to the
constraints φ ∈ Δ = {φ : φi ≥ 0,

∑
i φi = 1}.

3.4 EM Algorithm of Small Flows

Now we adopt a standard iterative approach: the Expectation Maximization
(EM) algorithm [9], the standard form is as follows.

Starting with an initial value φ(0), for example, φ(0) = { gi

γ }, the algorithm
finds sup{L(φ) : φ ∈ Δ}, by iterating between the following two steps (k =
0, 1, · · ·):
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E step. Let fij denote the frequencies of original flows of length i from which
j packets are sampled. Thus gj =

∑
i fij , while f i =

∑
j fij is the frequency

of original flows of length i at least one of whose packets is sampled. Form the
complete data likelihood function assuming known fij

Lc(φ) =
Njbord∑
i≥j≥1

fij log φicij (8)

Form the expectation Q(φ, φ(k)) of Lc(φ) conditional on the known frequencies
gj , according to a distribution φ(k):

Q(φ, φ(k)) =
Njbord∑
i≥j≥1

Eφ(k) [fij |g] log φicij (9)

M step. Define φ(k+1) = argmaxφ∈ΔQ(φ, φ(k)). From the Legendre equations

in the maximization of Q(φ, φ(k)) we have: φ
(k+1)
i =

E
φ(k) [fij |g]

γ . Through direct
computation of the above conditional expectation we obtain:

φ
(k+1)
i =

1
γ

∑
i≥j≥1

φ
(k)
i cijgj∑

l≥j φ
(k)
l clj

(10)

Iterate steps E and M until some termination criterion is satisfied. Let φ denote
the termination point. We write our estimation of original small flows as fi =
φiγ/(1 − Bp(i, 0)), i = 1, · · · , Njbord.

4 Evaluations and Comparison

Computational complexity. Let jmax denote the maximum sampled flow length.
The computation for binomial coefficients of Equations (6) is O(NNjbordjmax).
Tabulation of the binomial coefficients for the iteration is O((Njbord)2). Then
for a fixed φi, each EM iteration is O((Njbord)2). For all φi, completing an
EM iteration is O((Njbord)3). We compare the computational complexity of
our method against the best known EM algorithm in [8] for estimating flow
distribution from sampled traffic. In [8] for all φi completing an EM iteration
is O(i2maxjsize). We collect all IP packet heads during a period of 300 minutes
at Jiangsu provincial network border of China Education and Research Network
(CERNET) (1Gbps) to do offline experiment. For IP header data during a period
of 1 minute, sampling packets with p = 1/10 , in our method let ε = 0.01, then
jbord = 5, thus (Njbord)3 = 503. However, imax = 2000, jsize = 200 in EM
algorithm of [8], i2maxjsize = 6400 ∗ 503.

Estimation accuracy: We adopt Weighted Mean Relative Difference (WMRD)
as our evaluation metric. Suppose the number of original flows of length i is ni

and our estimation of this number is n̂i . The value of WMRD is given by:
WMRD=

∑
i |ni−n̂i|∑
i ( ni+n̂i

2 )
.
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Fig. 1. Comparison of our method and EM algorithm at sampling period N = 10 for
Jiangsu trace

We use three traces in our comparison experiments. The first trace is the
first publicly available 10 Gigabit Internet backbone packet header trace from
NLANR: Abilence III data set [10]. In our experiments , we used a minute of
traffic from the trace. The second trace, which contains packets during a 5-minute
period , was collected at Jiangsu provincial network border of China Education
and Research Network (CERNET) on April 17, 2004. The backbone capacity

Table 1. WMRD of our method and EM algorithm

trace Sampling period WMRD of our method WMRD of EM algorithm
Abilence III 10 17% 18%

30 23% 24%
100 34% 37%

Jiangsu 10 20% 28%
30 15% 29%
100 30% 39%

Abilence I 10 15% 14%
30 21% 23%
100 31% 35%

is 1000Mbps; mean traffic per day is 587 Mbps. We call this trace as Jiangsu
trace. The third trace, which contains packets during a 10 minute period, was
obtained from NLANR: Abilence I [11]. Figure 1 compares the two estimators of
Jiangsu trace derived by our method and EM algorithm of [8] at sampling period
N = 10. Observe that they are so close. Table 1 shows the estimation accuracy
of our algorithm is close enough to that of EM algorithm. In most cases, our
algorithm is much more accurate.
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5 Conclusions

Estimating the distribution of flow length is important in a number of network
applications. In this paper we present a novel method for estimation of flow
length distributions from sampled flow statistics. The main advantage is that it
could significantly reduce the computational complexity. The theoretical analysis
shows that the computational complexity of our method is well under control.
The experimental results demonstrate that our method achieves an accurate
estimation for flow distribution.
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