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a b s t r a c t 

The continuous growth of Internet and its applications caused more difficulties for analyz- 

ing Internet communications which are becoming more and more complex, this has caused 

new challenges for monitoring and managing the huge and vast network traffic. It is not 

efficient to monitor and analyze individual IP addresses, so it is more useful to monitor 

groups of IP addresses that have similar behavior, which represents a certain application 

activity. Nowadays, such a grouping is either based on network prefixes that does not meet 

the requirement mentioned above as difference of traffic behavior of individual IP address 

not being considered, or clustering IP hosts based on their traffic patterns, which requires 

information about TCP/UDP port numbers (which are occasionally obfuscated) or packet 

payloads (which are sometimes encrypted or unavailable from aggregated flow records). 

This paper proposes a new methodology of clustering IP addresses within a managed net- 

work domain such as campus network or ISP clients with similar social relationship based 

on inter-IP connectivity structure. The key idea of this methodology is to split the entire IP 

address space into Internal (inside the managed domain) and External (outside) ones. The 

clustering strategy is to group inside IP addresses that communicate with common out- 

side IP addresses, the similarity measure of two inside IP addresses is the unique number 

of the common outside IP addresses. We propose a novel approach with an approximation 

algorithm to discover communities on a large scale in the managed domain based on the 

bipartite networks and one mode projection and the basis of graph partitioning of the sim- 

ilarity graph. Bipartite networks were built using NetFlow datasets collected from a bound- 

ary router in an actual environment, and then a one-mode projection has been applied to 

build a social relationship similarity graph of the inside IP addresses. We propose a com- 

munity detection algorithm to extract communities. Experimental results demonstrate that 

our approach can discover communities from real large scale managed domain networks 

with a high quality. We experimentally validate our approach in terms of IP networking 

by applying deep flow inspection (DFI) and deep packet inspection (DPI) on related traffic 

to prove that hosts with the same cluster tend to have some dominant network behavior. 

We demonstrated the practical benefits of exploring social behavior similarity of IP hosts 
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1. Introduction 

With the continuous growth in the number and di-

versity of Internet hosts and applications, it is becoming

more increasingly important to understand traffic patterns

of end-hosts and network applications for efficient net-

work management and security monitoring. Different ap-

proaches have thoroughly analyzed Internet traffic and end

host behavior [1–17] . Some studies have focused on ana-

lyzing traffic behavior of individual hosts. Illiofotou et al.

[17] used IP communication graph and information about

some applications used by few IP-hosts for the purpose

of profiling Internet backbone traffic. Karagiannis et al. [4]

adopted an activity graphlet to profile end-host systems

based on their transport-layer behavior. Flow data of a host

were compressed into a compact representation. The au-

thors concluded that a user’s behavior can undergo large

changes over time. This underscores the need for cluster-

ing end hosts with similar profiles for large scale network

management, to understand users’ behavior for resource

provisioning, load balancing and efficient network moni-

toring. In addition, increasingly large number of end-hosts,

wide diversity of applications and massive traffic data pose

significant challenges for such fine-granularity analysis for

backbone networks, large enterprise networks and Internet

service providers. These challenges make it difficult for re-

searchers to study traffic patterns of end hosts indepen-

dently, therefore, it is more important to find groups of

hosts with similar behaviors. 

Discovering communities in networks is one of the im-

portant and challenging research topics of network man-

agement and network security, as well as the research

works in the social network analysis [18–28] . The prob-

lem of community detection has been addressed by re-

searchers from different disciplines where systems are of-

ten represented as graphs, such as in sociology, biology

and computer science. This problem is quite hard and not

yet satisfactorily solved. Huge efforts of large interdisci-

plinary community of scientists have been spent on it over

the past few years. The essential problem addressed by re-

searchers when they study community detection in com-

plex networks is the number of communities. In most of

the cases, since the number of communities that the net-

work should be partitioned into, and the number of mem-

bers in each community are both unknown in advance, it

is important to know which level of cutting edges of the

input graph should be applied to deduce a well and an

efficient graph-partitioning. The minimum cut approaches

has been adopted for graph partitioning which requires to

know the minimum number of edges needed to discon-

nect a graph [16] . However, the community structure prob-

lem differs crucially from graph partitioning in that the

sizes of the communities are not usually known in ad-

vance. Community detection methods operate under the
tion usage, users’ behavior, detecting malicious users, and users

. 

© 2016 Elsevier B.V. All rights reserved.

intuition that intra-community connections are more com-

mon than inter-communities connections. 

Motivated by research works in community detection,

the primary objective of this work is to solve the afore-

mentioned problems by developing an approach for clus-

tering IP hosts inside a managed domain network based

on their relationship with the outside Internet. The word

community usually refers to a social context. People nat-

urally tend to form groups, within their work environ-

ment, family, and friends [29] . Similar to community de-

tection in social networks, this paper proposes a novel

community detection strategy in IP networks to discover

such smaller communities in large scale IP networks that

share similar behavior. The proposed work is implemented

in a real large-scale IP network (China Education and Re-

search Network CERNET) and practically proved as an ef-

fective tool for network operators to discover communities

of hosts with similar connectivity with the outside net-

work. The results presented here are an actual observa-

tions obtained from CERNET border router. Practical im-

plementation of the method showed that it is possible to

find clusters with similar hosts’ behavior based only on

the IP relationship. The proposed approach is for cluster-

ing IP addresses within a managed domain network based

on their inter-IP communication structure with the outside

network. The objective is to find groups of similar behav-

ior to setup hosts’ behavior profiles. The overall scenario

of the problem is illustrated in Fig. 1 . The key idea of the

proposed method is to explicitly add location information

(inside/outside) for IP clustering by splitting the entire IP

address space into inside (the managed domain) and out-

side ones. The clustering method is to discover groups of

inside IP addresses that communicate with common out-

side IP addresses. The similarity measure of two internal

IP addresses is the unique number of the common out-

side IP addresses. The primary aim of this methodology

is to find clusters with similar social behavior, which are

expected to have similar network behavior. This method-

ology is implemented to analyze NetFlow dataset obtained

from a border router in an actual environment real net-

work, evaluated mainly on the basis of graph modularity,

and validated using deep flow inspection and deep packet

inspection. 

Specifically, the contributions of this paper include: 

• An intuitive methodology based on global communica-

tion structure is presented, i.e., inside–outside commu-

nication pattern represented as a bipartite graph, which

is used to represent communication patterns between

inside and outside networks, and construct one-mode

projection graphs to deduce social relationship similar-

ity of inside IP addresses. 

• This paper adopts a new efficient clustering algorithm

to discover communities of similar social behavior IP

addresses. 
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Fig. 1. The overall scenario of the problem: community structure detection within the managed network by observing their traffic at network boundary. 
• This methodology is based only on IP addresses and 

does not require information about TCP/UDP port num- 

bers (which are occasionally obfuscated) or packet pay- 

loads (which are often encrypted or unavailable from 

aggregated flow records), the use of an actual measured 

dataset is also the strength of this paper. 

• We demonstrate practical benefits of exploring social 

behavior similarity of Internet hosts in understand- 

ing application usage, users’ behavior, finding malicious 

users, and/or finding users of prohibited applications. 

The rest of this paper is organized as following: In 

Section 2 we discuss the already existed works in the field 

of community detection related to our work. The details 

of our methodology is given in Section 3 , and its experi- 

mental results are showed in Section 4 . In Section 5 we 

evaluate the proposed algorithm and discuss the results. In 

Section 6 we analyze the possible semantics of these clus- 

ters found by the experiment. Finally we present our con- 

clusion and future work in Section 7 . 

2. Related works 

Discovering clusters of hosts with similar behavior has 

a great importance and usefulness for network operators. 

This problem has attracted significant attention of network 

researchers. However, the problem is far from being solved. 

Many researchers tried to discover clusters with similar 

host behaviors based on traffic patterns of end hosts [3–

6,11–15,30] . Unsupervised classification of internet hosts 

based on their communication patterns in a space of traf- 

fic features are proposed in [3] . In this context, an unsu- 

pervised machine learning techniques were also applied in 

[14] to discover clusters of hosts with similar traffic be- 

haviors based on traffic patterns of individual hosts. Un- 

supervised clustering algorithm was applied on fifteen di- 

rect and indirect features extracted from the flows caused 
by observed IP addresses to cluster the most significant IP 

addresses into groups of similar traffic behavior. The focus 

was on clustering the most significant active IP addresses 

(which initiate more than 90% of the overall traffic) based 

on their network traffic patterns. Unlike previous works, 

this paper concentrates on clustering inside IP hosts by 

creating groups of similar network connectivity with the 

outside ones without relying on packet and flow level in- 

formation, which can be obfuscated, therefore, there is no 

need to collect information about the protocols, ports, or 

any other traffic features, instead it just relies on the con- 

nectivity between the inside and the outside IP addresses 

(who has a relationship with whom). In this sense, we re- 

fer to it as the IP address social relationship discovery of 

IP addresses in the managed domain. This connectivity is 

analyzed using bipartite graph and a one mode projection. 

In complex networks, communities are defined as 

groups of densely interconnected nodes that are sparsely 

connected with the rest of the network [31] . Commu- 

nity detection has different applications. For instance, Kr- 

ishnamurthy et al. [32] introduced clustering Web clients 

who have similar interests and are close together topologi- 

cally and likely to be under common administrative con- 

trol may improve the performance of services provided 

on the World Wide Web. Krishna et al. [33] Identify clus- 

ters of customers with similar interests in the network of 

purchase relationships between customers and products of 

online retailers which enables to set up recommendation 

system that guides customers and enhances the business 

opportunities. Ferreira et al. [34] used community detec- 

tion for time series clustering by transforming set of time 

series into a network using different distance functions, 

then, applied community detection algorithms to identify 

groups of strongly connected vertices to identify time se- 

ries clusters. Community detection in computer networks 

has different purposes such as detecting network traffic 

anomalies [35,36] , behavior analysis of internet traffic [13] , 
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and application identification [15] . The community struc-

ture discovery in networks provides an understanding of

relationship between entities in this network. This is a

quite helpful mechanism for protecting networks from at-

tacks because any change in communities’ structures will

be easily discovered. On the other hand, managing com-

puter networks on the level of enterprise networks or even

on the higher levels (e.g., campus networks or ISPs) would

become much easier when information about how entities

being connected with each other is available. This will also

improve the provided quality of service (QoS). A discovered

community is called a community of interest which is a

collection of hosts that share a common goal or environ-

ment, or it may be a collection of interacting hosts [30] . 

Community detection in graphs aims at identifying the

modules by only using the information encoded in the

graph topology. The problem has a long tradition and it has

appeared in various forms in several disciplines. Newman

et al. [37] proposed an algorithm, aiming at the identifica-

tion of edges lying between communities and their succes-

sive removal, a procedure that after some iterations leads

to the isolation of the communities. Intercommunity edges

are detected based on the importance of the role of the

edges in processes where signals are transmitted across

the graph following paths of minimal length. Newman [31]

has examined the problem of detecting community struc-

ture in networks as an optimization task to find the maxi-

mal value of the quantity called as modularity over possi-

ble divisions of a network. Modularity is one measure of

the structure of networks or graphs. It was designed to

measure the strength of division of a network into mod-

ules (also called groups, clusters or communities) [31] . Net-

works with high modularity have dense connections be-

tween the nodes within modules but sparse connections

between nodes from different modules. Modularity is easy

to compute and widely applicable. However, modularity

optimization methods suffer from a resolution limit prob-

lem that depends on the size and connectivity of the net-

work [38] . Spectral and min-cut techniques have been ap-

plied, but exhibit a bias such that aggressive maximization

of certain community score functions can destroy intuitive

notions of cluster quality [10] . 

Bipartite graphs have been used to analyze complex

networks [39] , Internet traffic [15] , and social networks

[40] . Kuai Xu et al. [13,15] used graph analysis to con-

struct the bipartite graphs from host communication and

then to generate the one-mode projection graphs for un-

covering the communication patterns behavior similarity

among the end hosts within the same network prefix by

applying spectral clustering algorithm. Bipartite networks

are graphs with two parties with links connecting vertices

between different parties, and not possible to have links

between two nodes from the same part. In [13,15] the two

sides of the bipartite graph are the source IP addresses

and the destination IP addresses. Unlike [13,15] , this work

constructs the bipartite graphs from hosts communications

provided by NetFlow records at the boundary router where

the two separated groups of entities are IP addresses from

the two sides of the Internet, one is the managed domain

inside IP addresses, and the other is the outside IP ad-

dresses, regardless of the direction of the flow record. Since
the managed domain IP addresses can be mapped, and the

NetFlow records communications between hosts from two

different sides, any other IP address observed in the trace

is considered as an outside IP address. Our focus is to de-

tect communities from the total managed domain which

may contain tens or hundreds of thousands of IP nodes,

not only detecting communities from the hosts within the

same network prefix as in [13] , so it is important to adopt

a robust algorithm which can perform the clustering in

an efficient manner to cluster the expected large number

of hosts. Furthermore, the work proposed in [13,15] per-

formed partitioning similarity matrix with spectral cluster-

ing algorithm which impose high computational complex-

ity because it firstly requires performing a quite complex

Laplace transformation to compute the number of clusters

k and later applies K-mean unsupervised clustering. This

indicates that the complexity will greatly increase with the

increase of the number of the IP addresses. 

We apply one mode projection on the bipartite graph

over the outside nodes, the result of the one-mode pro-

jection is the social similarity graph, the vertices in this

graph are the inside IP addresses, each two nodes have an

edge connecting them if both IP addresses have at least

one common outside IP address, and the weight of the link

is the number of common outside IP addresses. The ad-

jacency matrix of this graph is called the similarity ma-

trix. The clustering is done by a heuristic approximation

algorithm based on an affiliation factor which measures

the degree of affiliation of each node to a group of nodes.

Therefore, we put each IP address in a group of IP ad-

dresses which have similar social behavior. The proposed

algorithm outperforms the previous algorithms from the

theoretical viewpoint and useful for the actual problem in-

stances. There is no need to know the number of clus-

ters in advance, instead, the clustering is based on creating

clusters of explicitly neighbored nodes. 

3. The proposed methodology 

Community detection plays an important role in re-

search on network behavior and characteristics of network

elements and in the mining of network information. A

variety of algorithms have previously been proposed, but

with the continuous growth of network scale, few of them

can detect community structure efficiently at a large scale

networks. We study the community detection at a large

scale networks based on NetFlow records collected from

the Internet boundary routers. Actually this approach

could be applied on any type of datasets that provide the

trace of IP connectivity captured by border routers. This

methodology is based only on IP addresses and does not

require information from IP packets, like TCP/UDP port

numbers (which are occasionally obfuscated) or packet

payloads (which are often encrypted or unavailable from

aggregated flow records), and this is the strength of this

approach. Any dataset provides IP addresses connectivity

between the two sides of the border router can be used.

This approach is not limited to the managed domain, but

it is more general. The main focus is to be able to setup a

model to detect communities with similar social relation-

ship behavior of IP addresses in one side of the Internet
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Fig. 2. Schematic process of discovering social behavior communities within the managed domain network. 

 

based on their connectivity with the IP addresses from the 

other side. Each IP address is considered as an entity, and 

processed as an individual node. Fig. 1 shows the overall 

scenario of the problem, community structure detection 

within the managed network by observing their traffic at 

network boundary. As we show in Fig. 1 , our intention 

is to group inside IP addresses that are connected to the 

same IP addresses from the outside network in one group, 

this will be useful to have a better understanding of what 

services are requested from or provided to the outside 

network, besides, it will be helpful to identify some closed 

user groups such as botnets. Fig. 2 shows the schematic 

process of our methodology. This methodology is defined 

in the following steps: 

3.1. Split the observed IP addresses into inside and outside 

This approach has been implemented in China Educa- 

tion and Research Network CERNET. The managed network 

includes about 350 network prefixes. By mapping observed 

IP addresses based on the network prefixes, it is possible 

to determine that an observed IP address belongs to the 

inside (managed) network, or to the outside network. Net- 

Flow records are collected from the border router and ag- 

gregated into new flow records by another system called 

NBOS [41] , each flow record represents several similar Net- 

Flow records. The aggregated flow records are stored in 

files with time slots of 5 min. This is a moderate time, 

and offers some advantages. It reduces the possibility that 

a host is given a new IP, or the IP is being used by an- 

other host during this period. Besides, it reduces the in- 

put number of IP addresses to the clustering algorithm. 

The question now is which list of IP addresses will be an- 

alyzed? In the next section, the distribution of observed IP 

addresses over 24 h at the backbone router will be shown 

in Fig. 5 (a). It is not useful to analyze all observed IP ad- 

dresses, therefore, the focus will be on the active hosts that 

appear in the flow records as source IPs. From Fig. 5 (a), 

the total number of observed inside IP addresses is much 

less than the total number of inside IP addresses observed 

in the flow records. Therefore, the focus was on the ac- 

tive inside IP addresses observed in flow records within 

a time slot of 5 min. By implementation, there is an abil- 

ity to analyze the most significant IP addresses based on 

traffic caused by them. In a Previous research [42] it has 

been validated experimentally that 10% of the total IP ad- 

dresses observed at the border routers, cause about 90% of 

the total traffic. Nevertheless, the experiments conducted 

here and results presented in this paper are based on 
the whole scope of active IP addresses observed in the 

flows. 

3.2. Construction of the bipartite graph 

Bipartite graph is a graph whose vertices can be di- 

vided into two disjoint sets (totally independent sets) such 

that every edge connects two vertices, each of them be- 

longs to one of the two independent sets, and no edges 

can exist within one of these groups. The output of the 

previous process is two separate sets of IP addresses, they 

represent the two sets of vertices in the bipartite graph. 

The proposed approach is to discover communities of sim- 

ilar social relationship within the managed domain based 

on their connectivity with the IP addresses from the out- 

side network. Let X be the list of inside IP addresses, Y 

is the list of outside IP addresses. The bipartite graph is 

represented with its adjacency matrix. Let n = |X| be the 

number of inside IP addresses (internal vertices), p = |Y| 

is the number of outside IP addresses (external vertices), 

and then: G = (X, Y, E) is the bipartite graph. Fig. 3 (a) il-

lustrates a bipartite graph constructed using two separate 

lists on nodes, the inside on the left and the outside on 

the right. These edges are not weighted, for an inside IP 

address if it has a single or multiple connections with an 

outside IP address, it is involved in this relationship, and 

this relationship is considered in clustering. For a vertex v , 

the number of adjacent vertices is called the degree of the 

vertex and is denoted as deg(v) . The degree sum formula 

for a bipartite graph states that: ∑ 

x ∈ X 
deg ( x ) = 

∑ 

y ∈ Y 
deg ( y ) = | E | (1) 

The adjacency matrix of the bipartite graph is defined 

as the following: 

B n ∗p = 

{
1 i f there exists at least one f low between i and j 

0 i f there is no f lows between the nodes i and j 

3.3. One-mode projection 

After the construction of the bipartite graph represent- 

ing connectivity between the two sets of inside and out- 

side IP addresses, a one mode projection over the external 

vertices is performed. In one mode projection of a bipar- 

tite graph; an edge connects two nodes from the same side 

of the bipartite graph if and only if both nodes have con- 

nections to at least one same node on the other side of 

the bipartite graph. Fig. 3 (b) illustrates one mode projec- 

tion of the internal nodes over the external nodes of the 
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Fig. 3. (a) The bipartite network constructed from the inside and outside network connectivity (b) the one-mode projection of the inside nodes (c) the 

discovered communities. 

Fig. 4. (a) A graph generated after a one-mode projection of 100 randomly selected inside IP addresses from the flows observed at time slot 14:00–14:05. 

(b) the sum of weighted links inside sub communities and between members of different communities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bipartite graph in Fig. 3 (a). We may notice that all ver-

tices in this new generated graph are the internal set of

IP addresses, and the one mode projection deduces such

kind of similar social relationship between internal IP ad-

dresses. We call the new graph as the social behavior sim-

ilarity graph, its vertices are the internal IP addresses, an

edge appears between two nodes if they have a connectiv-

ity to at least one common external IP address, the weights

of the edges represent the number of “distinct” common

external IP addresses. We call the adjacency matrix of the

one mode projection as the similarity matrix S which rep-

resents the similarity in social behavior between IP ad-

dresses. S n ∗n = [ s i j ] Where s i j is the number of common

external IP addresses between i and j . Similarity matrix is

a symmetric matrix; all entities on the main diagonal are

zeros s ii = 0 . 

3.4. Clustering 

Communities are defined as groups of densely intercon-

nected nodes that are only sparsely connected with the

rest of the network. We have selected 100 IP addresses
from the inside network observed in the flow records from

the time slot 14:00–14:05, then we built the bipartite

graph which represents the inside/outside connectivity be-

tween IP addresses in this list and the outside network.

Then we applied a one mode projection to get the simi-

larity graph of the selected 100 IP addresses as illustrated

in Fig. 4 (a) using Gephi [43] (an open source software

for exploring and manipulating networks). We may notice

the existence of sub groups of nodes that are connected

to each other more than nodes in other groups. Fig. 4 (b)

shows the sum of weights links from these groups. It is

clear that if some low weight links were removed, we can

get several small communities, and this is what the clus-

tering algorithm is doing. 

The proposed algorithm allows an IP address to stay

in the community which has the highest similarity with

its members (maximum number of weighted edges), and

to be removed from other communities where it has a

lower number or no edges with their members in the

similarity graph. From prospective of graph theory, each

line in the adjacency matrix represents a sub-graph in

which the vertices are the element at the row index with
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Algorithm 1 Algorithm for discovering communities of similar social relationship. 

Input: flow traces from border router during a given time window T f 
1: Split the observed IP addresses into X: inside and Y: outside. 

2: Construct bipartite graph of IP connectivity G = (X, Y, E); an edge e ∈ E connects a vertex u ∈ X to a vertex v ∈ Y if there is at least one flow 

between u and v in T f . 

3: Perform a one-mode projection over Y to get the Social Similarity Graph G‘ = (X, E‘). S is the adjacency matrix of G‘ (the social relationship 

similarity matrix of X). 

4: Let the initial clusters be as the following: 

a. Add each row index i in S to a new cluster C i 
b. Add each column index j where S[ i,j ] > 0 to C i 
c. Clusters with single member are added to the outliers list and excluded from the remaining processing. 

5: Remove clusters that are subsets of other clusters. 

6: Check if an element x i exists in two clusters C k , C l then: 

a. Calculate: 

i. the affiliation factor of x i to C k as: AF ( x i , C k ) = 

∑ 

j∈ C k 
S i j , and 

ii. the affiliation factor of x i to C l as: AF ( x i , C l ) = 

∑ 

j∈ C l 
S i j 

b. if AF ( x i , C k ) > AF ( x i , C l ) then x i stays in C k and removed from C l ; Otherwise, 

c. if AF ( x i , C k ) < AF ( x i , C l ) then node x i stay in C l and removed from C k ; 

d. If AF ( x i , C k ) = AF ( x i , C l ) then the element x i will be removed from the cluster with less number of elements. 

7: After removing an element x i from a cluster C k , if | C k | = 1 ; then add the remaining element in C k to C l and remove C k 

 

1 Readers who are interested can request datasets used in this imple- 

mentation by email to be able to reproduce the results. 
each column index element, where the value of the cell 

in the matrix is larger than 0. These sub-graphs are the 

initial clusters, and they are identified by an ID which 

is the row index. In other words, we consider each node 

with all of its neighbors as an initial cluster. For example, 

the i th element in the similarity matrix and all elements 

in the same line where s ij > 0 (they have a common ex- 

ternal IP with the i th) are considered as one cluster. The 

maximum initial number of clusters is n . It is true that 

the similarity matrix is a symmetric matrix, however, we 

experimentally realized that taking the entire matrix lines 

as initial clusters attain superior results, however, it costs 

more processing time. To eliminate the total number of 

initial clusters and reduce the clustering processing time, 

clusters which are subsets of others are removed. 

As we have mentioned, the problem here is that neither 

the number of communities, nor the number of members 

in each community are known. For that reason, we remove 

members from certain communities based on an Affiliation 

Factor AF ( x i , C k ) which represents the degree of affiliation 

of a node x i to a cluster C k and is calculated by: 

AF ( x i , C k ) = 

∑ 

j∈ C k 
S i j (2) 

AF is a metric used for the partitioning process that 

determines which cluster is appropriate for a specific el- 

ement. Therefore, for each element x i from cluster C k , we 

check if it exists in another cluster C l , then its affiliation 

for both clusters is calculated, that consequently leads to 

one of three cases: 

• if AF ( x i , C k ) > AF ( x i , C l ) then the element x i will stay 

in C k and removed from C l ; 

• if AF ( x i , C k ) < AF ( x i , C l ) the node x i will stay in C l and 

removed from C k ; 

• Otherwise, if AF ( x i , C k ) = AF ( x i , C l ) then the element 

x i will be removed from the cluster with less number 

of elements. 

It is worth mentioned that empty clusters are deleted 

after each removal operation. Algorithm 1 outlines the ma- 

jor steps of the proposed approach. The input of this algo- 
rithm is network flow traces during a given time window. 

The output of this algorithm is the inside IP addresses and 

each IP address is assigned to a cluster, while the mem- 

bers of each cluster have similar social relationship with 

the outside network. The strength of this algorithm is that 

it is intuitive and easy to implement, and the outcome is 

unsupervised, i.e. no need to provide any parameters such 

as the number of clusters or the number of nodes in each 

cluster or the number of nodes at which the algorithm 

will stop partitioning the graph. The most significance of 

this work also is its implementation using real datasets, 

as will be discussed in the following sections. Moreover, 

the proposed approach will be validated by means of net- 

work traffic behavior of the resulting clusters members. Af- 

ter clustering the IP addresses based on similarity of their 

connectivity with the outside network, the deep flow and 

packet inspections show that each resulting cluster has a 

dominant network behavior over the period of study. 

4. Experimental results 

The datasets used in our experiments are aggregated 

NetFlow records, each dataset is collected from the bor- 

der router of CERNET over a period of 5 min. An aggregated 

flow record represents a group of original NetFlow records 

with the same 5-tuples in the same time slots. These 

datasets were already collected and stored in files. The pro- 

posed approach was implemented using C ++ on a server 

with Intel CPU running CentOS release 6.4. The proposed 

approach is implemented to run offline, this is because it 

is required to provide all the dataset within the time win- 

dow to be able to construct the full bipartite graph. If the 

time window is too short, the obtained results would be 

useless. The conducted experiments were applied with a 

time windows of 5 min. Fig. 5 (a) illustrates the distribution 

of the number of inside and outside IP addresses observed 

in the flows for 24 h with 5 min time slots on dataset col-

lected on 2015/6/03 1 by border routers. Inside IP addresses 
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has been clustered based on the proposed approach (social

relationship similarity). Fig. 5 (b) shows the percent of IP

addresses that do not have any common outside connec-

tivity with other inside IP addresses. Fig. 5 (c) shows the

distribution of total number of clusters, including clusters

with single member (outliers), and the number of clusters

with at least 2 IP addresses. Experiments conducted on the
above mentioned datasets for the whole day demonstrate

that about 14% of the total inside IP addresses are outliers,

that means they do not have social similarity with others.

The remaining 86% of the inside IP addresses are clustered

with at least 2 members and the number of these clus-

ters is about 6.47% of the total number of the inside IP

addresses. 
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Fig. 6. Modularity value calculated after clustering internal IP addresses observed in flows over a duration of 24 h with a time slot of 5 min. We notice 

that most of the modularity values are higher than 0.3 which reflects the efficiency of the clustering. It’s clear that the modularity value during the idle 

time from 1:00AM to 8:00AM is the highest. 
Members of any cluster tend to have the same domi- 

nant network behavior, so it is more efficient to pick one 

or several IP addresses from each cluster to analyze their 

network behavior instead of the whole cluster members. 

By this work, traffic analysis has been shifted from host- 

level to community or cluster level which increases the 

granularity of traffic analysis compared to host-level traf- 

fic analysis by reducing the number of behavior profiles for 

analysis to an average of 20% of the clustered IP addresses 

(outliers 14%, and clusters 6%). And the other benefit is to 

know that there is a reduced list of hosts that have “out- 

lier” behavior (connected to non-common outside hosts). 

5. Discussion and evaluation 

5.1. Modularity 

Modularity was proposed by Newman et al. [31] and 

had been used as a standard to measure the strength of di- 

vision of a network into modules or the quality of commu- 

nity detection algorithms [44] . It compares the number of 

edges inside a cluster with the expected number of edges 

that one would find in the cluster if the network were 

a random network with the same number of nodes and 

where each node keeps its degree, but edges are otherwise 

randomly attached. It is positive if the number of edges 

within groups exceeds the number expected on the basis 

of chance. The value of the modularity lies in the range 

[ −1, 1). Modularity is often used in optimization methods 

for community structure discovery in networks. It reflects 

the concentration of edges within modules compared with 

random distribution of links between all nodes regardless 

of modules. Networks with high modularity have dense 

connections between the nodes in the same cluster but 

sparse connections between nodes from different clusters. 

The main consideration of modularity is the degree of dis- 

tribution of the nodes in the network. In our network G‘ = 

(X, E‘), the adjacency matrix is given by the Similarity ma- 

trix S; the network contains a total of n nodes (vertices) 

and m edges, and d i , d j are the degrees of nodes i and j 

respectively. For any node, differences between the actual 

interactions and the expected numbers of connections can 

be obtained by calculating S i j −
d i d j 
2 m 

, therefore, for a com- 

munity C, the strength of the community effect can be de- 
fined as: 
∑ 

i ∈ C, j∈ C 
S i j −

d i d j 
2 m 

So for the network G‘ divided into 

k communities, its modularity can be calculated by the fol- 

lowing equation: 

Q = 

1 

2 m 

k ∑ 

l=1 

∑ 

i ∈ C, j ∈ C 
S i j −

d i d j 

2 m 

(3) 

The division by 2 m is to normalize the Q value 

between −1 and 1. If the number of edges inside commu- 

nities is no better than random, we will get Q = 0. The 

maximum value Q = 1 indicates that there is a strong 

community structure in the network (No edges connect 

members from two different communities). Practical im- 

plementation of this measurement by different research 

works confirm that a division of a network is considered 

a “good” division if the Q value lies between 0.3 and 0.7 

[44] . We calculated modularity after each clustering of the 

IP addresses observed in the flows within the time slot 

(5 min) for a whole day to evaluate our algorithm, Fig. 6 

illustrates Q values for community structure detection 

by our algorithm with most of the Q values higher than 

0.3. It is clear from Fig. 6 that during the idle time (from 

01:0 0AM to 08:0 0AM) there exists a high level of mod- 

ularity. Actually this is normal, because there is a steady 

behavior of internal hosts during this time. An example on 

such behavior can be big files downloads/uploads, backup, 

update, P2P. This kind of connectivity have a stable nature 

and there is no big changes in connectivity with outside 

network. On the other side, the users behavior during day- 

time tend to be more random, more diversity of Internet 

applications are used, therefore, each internal IP address 

tend to communicate with a massive number of external 

IP addresses, also a big number of internal hosts use 

multiple Internet applications simultaneously which make 

it more difficult to separate nodes into different clusters, 

because more number of links in the graph need to be 

cut off, which makes the Q value to drop as illustrated in 

Fig. 6 . As we have mentioned earlier, the value of mod- 

ularity reflects the quality of partitioning the network to 

discover community structure, but based on the objectives 

of this research, we need to find clusters that have similar 

connectivity to validate its traffic behavior similarity, 

some works has focused on achieving the highest value 

of modularity like in [45] where the authors focus only 
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Fig. 7. A color scaled matrix of the sum of weighted edges between 

nodes from 50 communities, the main diagonal represents sum of 

weighted edges inside communities. 
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on getting the highest value of modularity, therefore, it

may outcomes a very big cluster which may itself should

be partitioned into several similar behavior clusters when

we talk about network traffic behavior. This approach

creates clusters of explicitly neighbored nodes. Therefore,

the graph is divided into subgraphs that does not include

long paths between its nodes to be focused only on the

objective which is detecting clusters of IP addresses that

have a similar connectivity with the outside network. 

5.2. Inter- communities vs. Intra- communities links 

Communities are defined as groups of densely inter-

connected nodes that are only sparsely connected with the

rest of the network. To evaluate the clustering algorithm,

we compare the sum of weighted edges within the same

community with the sum of weighted edges between

nodes from different communities. Fig. 7 illustrates a color

scaled matrix of the sum of weighted edges between

members of a randomly selected 50 communities from the

clustering results of the first 5-min slot after 2:00PM. The

main diagonal represents the sum of all weighted edges

connecting members from the same community, while the

rest area represents sum of weighted edges connecting

nodes from different communities (Inter-communities

edges). It’s clear from the figure that the number of edges

between members of the same community are much

higher than the number of edges connecting nodes from

different communities. And based on the definition of

communities, this attests the existence of the communities

discovered by this approach. It is true that there are

some clusters that have some or many edges connecting

between nodes from different communities, but they are

much less than the sum of edges connecting nodes from

the same community. From the example illustrated in

Fig. 7 , the total sum of the inter-communities weighted

links was calculated, it represents about (7.23%) of the

total sum of weighted links in the whole graph, with a

Modularity Q = 0.759013. 
5.3. Sizes of communities 

Fig. 8 illustrates the sizes of communities discovered in

six periods of successive five minutes time slots sorted by

size in a descending order. We noticed that the number of

communities bigger than 100 is less than 5% of all com-

munities, while the size of about 40% of the communities

is less than 5 members. It is important to realize that the

sizes of discovered communities over successive periods of

time are almost the same. That means, there is no major

changes in clusters’ sizes which indicates that the cluster-

ing algorithm is greatly stable over successive periods. 

5.4. Clusters stability 

In cluster analysis, stability is intensely based on the

dataset, especially on how well separated and how homo-

geneous the clusters are. In our case, the cluster instabil-

ity indicate anomalous behavior in the network. The stable

cluster also guarantee that the behavior of each member

of the cluster can be reasonably used to represent the be-

havior of the whole cluster members. Therefore, the host

profiling process will be more efficient for one host rather

than many, which in turn significantly reduce the network

management’s burden and complexity. However, the num-

ber of clusters may slightly fluctuate over time, as illus-

trated in Fig. 5 (c). The reason for that is that some hosts

may do not continuously send or receive traffic, or they are

not observed in NetFlow records. To evaluate clusters’ sta-

bility over time, we define the popular IP list for a period

T as the list of IP addresses which are observed in flow

records in each time slot analyzed for the time period T.

The stability is evaluated on a period of 20 min from 14:00

to 14:20, which consists of four time slots of five minutes

length. The popular IP list of the observed inside IP ad-

dresses over T is calculated, it represents about 50% of total

IP list observed in each time slot. The algorithm was run

on this time period, the numbers of clusters of each run

is calculated and sorted in a descending order, each clus-

ter from the first time slot with its matching cluster from
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Fig. 9. Clusters stability. 

 

the second, third, and fourth one. The 25 largest clusters 

were selected, and illustrated as in Fig. 9 , where A, B, C 

and D represent the clusters’ sizes in each time slot. AB 

represents the number of common members between A 

and B, and so for BC and CD. It is clear from Fig. 9 that the 

proposed approach demonstrated a significant stability, as 

the curves are almost overlapping during the whole eval- 

uated period. It is also clear that the number of common 

members within two corresponding clusters from two suc- 

cessive periods remain the same as shown in Fig. 9 (a), (b) 

and (c). 

5.5. Time complexity of the proposed approach 

Time Complexity of the proposed approach is the esti- 

mate of the amount of resources required to perform the 

task, from reading the input dataset, splitting the observed 

IP addresses, constructing the bipartite graph based on the 

active IP addresses, perform a one mode projection, and 

finally clustering the similarity graph. The time complex- 

ity is defined as the sum of the complexities of all steps. 

This is based on the length of the flow records, and the 

number of IP addresses desired to be analyzed, in addition 

to the connectivity overlapping between hosts. Several ap- 

proaches appeared to find communities in graph, but they 

may not be suitable for the problem. Here we need to 

create clusters of explicitly neighbored nodes in similarity 

graph, while other optimization based approaches focus on 

increasing the value of modularity [26,31] which is not the 

good choice for this problem. 

Let’s denote the number of aggregated flows collected 

in a period of time ( T f ) as N f , then the observed IP ad- 

dresses are split into n inside IP addresses and p outside 

IP addresses in O ( N f ), the bipartite graph is constructed in 

O ( N f ). The one-mode projection of bipartite graph needs 

O ( n 2 ) to be computed [46] . The Initial clusters are ex- 

tracted in O ( n ). Subset clusters are removed in O ( n 2 ). Af- 

ter removing outliers and subsets, the new number of 

clusters is ( k ). The separation of overlapping clusters re- 
quires O ( α∗k 2 ). Where α represents the maximum num- 

ber of common nodes between two overlapping clusters, 

this value has been significantly reduced in the previous 

step when clusters that are subset of others are removed. 

Consequently, empirical results show that the value of k 

is very low compared with of the value of n . In addi- 

tion to that this value is reduced continuously during this 

step to reach the final number of clusters. So, theoret- 

ically, the time complexity of the proposed approach is 

O ( n 2 ), which means it outperforms common known algo- 

rithms for community detections which require O ( m 

2 n ) in 

GN [37] , O ( md ∗log n ) in Newman et al. [44] and O ( mn 2 ) in

Ref. [47] . 

Memory consumption is also considered, sine very big 

matrixes are required to perform this task, vectors of vec- 

tors were appropriate for this case. The bipartite graph ad- 

jacency matrix is the biggest matrix, but using a bool type 

matrix considerably reduced the size and remarkably im- 

proved the computation time. vector of bool typed in C ++ 

is a space-efficient specialization bool where each element 

occupies a single bit instead of sizeof(bool) bytes [48] . 

The proposed approach is implemented to run offline to 

analyze historical hosts’ behavior to setup hosts’ profiles. 

This means no need to analyze the whole flow records, 

instead, it is suggested to analyze the first and the sev- 

enth flow records of each twelve five-minute periods in 

one hour. Fig. 10 illustrates the actual memory consump- 

tion and time required to process flow records collected 

on 23/11/2015 by CERNET border router. The first and the 

seventh five-minute periods of each hour are processed on 

the aforementioned machine. The experiments conducted 

to measure the time required to analyze flow records col- 

lected by the border router over a whole day using the 

proposed approach illustrated in Fig. 10 shows that the 

processing time is correlated with the number of edges 

(m) in the similarity graph. It is clear from Fig. 10 that the 

number of edges in the similarity graph increases signif- 

icantly with any increase in the number of inside IP ad- 

dresses. The time and memory required to run the whole 
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proposed approach over different times of the day assure

the efficiency of this approach within reasonable limits of

time and resources consumption. 

5.6. Limitations and errors 

The similarity matrix measures the social similarity be-

tween two inside IP addresses. The strategy used to gen-

erate the similarity matrix imposes arranging the elements

of the matrix according to the order of NetFlow records.

However, we experimentally realized that the change in

the order of the inside IP address consequently lead to

a slight change in the clustering results. To measure the

error resulting due to this problem, the algorithm is ap-

plied several times on the same dataset in a random or-

der of the inside IP addresses. Noteworthy, the number of

inside IP addresses list used to perform this test is 8163.

The similarity matrix is rearranged based on the input or-

der. For each run, we measured the modularity, the num-

ber of clusters, and the conformity factor rate. The confor-

mity factor rate is the average percentage of the element

conformity between the current state of the cluster and

its previous state using the same dataset. The results are

demonstrated in Fig. 11 . As it is clearly shown from
Fig. 11 (a) the conformity rate is very high (more than 97%).

And from Fig. 11 (b) the change in the modularity value

is very small (the difference between the maximum value

and the minimum value is 0.067). Moreover, the number

of clusters has not greatly changed as shown in Fig. 11 (c).

The limitation of this approach is that it cannot avoid this

error, however, the result indicates that the error due to

the arrangement is quiet small and has no great effect on

the overall results. 

6. Semantics of clusters in terms of IP networking 

As we have mentioned above, the objective of this pa-

per is to investigate whether a similar social behavior of IP

hosts can reasonably represent the similar network behav-

ior. In the following section, the proposed approach will be

experimentally validated in terms of IP networking. 

6.1. Dominant behavior of communities 

By selecting some clusters resulted from a single period

of clustering, and doing deep flow inspection on the flow

records where the members of these clusters observed to

see the whole network traffic behavior of the members
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Table 1 

Dominant behaviors of some selected clusters to validate results in terms of IP networking Time period 15:00–15:05. 

Cluster ID Cluster size Protocol usage Application usage Notes about most frequent common external IP addresses 

0 2623 TCP: 92.8% http: 90% All IP addresses in this cluster accessed baidu.com website 

UDP: 6.69% P2P: 8.5% 

1 1160 TCP: 96% http: 93.81% All IP addresses in this cluster accessed lzu.edu.cn website 

UDP: 3.56% P2P: 5.23% 

3 762 UDP: 9.61% service: 99.74% UDP, 112.124.100. ∗:53, aliyun.com is the source and all IP 

addresses in this cluster are destinations, source port is 53, 

destination ports are totally different 

TCP: 0.24% http: 0.22% 

13 253 UDP: 99.9% P2P: 88.53% P2P connections with 69.22.142. ∗ using different src/dst ports 

Service: 11.19% 

18 168 TCP: 98.30% http: 73.47% All IP addresses in this cluster accessed google.com 

UDP: 1.55% P2P: 25.41% 

63 51 TCP: 90.18% P2P: 71.77% All IP addresses are connected with 23.81.109. ∗ internal port: 

3389 (Microsoft Terminal Server RDP). external port: 60 0 0 

(remote graphical user) direction send/receive 

UDP: 7.05% Web: 17.79% 

Service: 10.12% 

69 47 UDP: 58% P2P: 50.32% IP addresses from chinatelecom.com.cn had P2P connections 

with the members of this cluster, also they requested MSSQL 

on the internal port: 1433, external port: random 

TCP: 42% Service: 46.75% 

107 27 TCP: 100% Web: 96.77% Port This 80, 97%, External IP is ∗ . This is an abnormal 

behavior: a single external IP address with random port 

numbers communicating over TCP (Web service) with 27 

internal IP address as if they are all web service providing 

service on port 80. 

P2P: 3.22% 

Table 2 

Some identified closed groups. 

ID Size Outside peers Protocol usage Application usage Local port Remote port Notes about most frequent common 

external IP addresses 

10 32 13 TCP 98% Unknown: 95% 3389: 100% ∗ All IP addresses are connected with 

one or both of two outside IP addresses 

(46% the first, 30% the second) 

104 4 29–31 TCP 100% FTP: 68%, 80, 100% ∗ Strange behavior: About 30 outside IP 

addresses using ftp and another 

unknown service from inside 4 hosts 

on port 80 only. 

Unknown, 32%, 

177 3 3–8 TCP 100% Unknown: 80: 60% ∗ A single outside IP address is using 

several services from 3 inside hosts. 

The requested services include only 

10% http, and the rest 90% for other 

services, but the port used by inside 

hosts are only 80, 8080, 8081 which 

are normally used for http. 

45% 8080: 25% 

FTP: 15% 

http: 10% 8081: 15% 

Multimedia: 10% 

Voice: 10% 

184 2 80–85 TCP 99% FTP: 75% 80: 77% 80, 20% The two inside hosts request ftp 

service on port 80 

Unknown, 19% 

http: 2% 

323 2 11–21 TCP 100% FTP: 65% 80: 100% ∗ Outside hosts requesting ftp and other 

services provided from inside hosts on 

port 80. 

Unknown: 35% 

331 2 1 TCP 100% Unknown: 100% 3389: 100% ∗ A single outside IP connected with two 

inside IPs 
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Table 3 

Network traffic behavior of some identified outliers IP addresses. 

IP Outside peers Protocol Usage Application Usage Local port Remote port Notes about most frequent common 

external IP addresses 

IP1 1 UDP:100% Service: 100% 7643: 100% 1196: 100% From 0 0:0 0 to 24:00 and in each time 

slot it connects with a single outside IP 

address X, average packets 3packets/5 

minutes, average packet size is 200. 

IP2 159 UDP: 98.7% Unknown: 98.7% 53: 98.7% ∗ It seems to be a DNS server 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of each cluster, it was very clear that there is a domi-

nant behavior of IP addresses in the same cluster, such as

the most frequently used application, furthermost accessed

website and the highest requested services. Table 1 shows

that some clusters are very huge, and the service they are

using is very common as shown in cluster (0) where the

most common service accessed by the cluster members is

searching the web using baidu.com, or using other services

provided by the giant website in China. 

6.2. Closed groups 

Closed user groups are groups of hosts that have simi-

lar behaviors. These groups use some specific applications

for a relatively long time, they stay connected with one or

a list of outside IP addresses all the time, and they have

the same purpose. Some examples of these closed groups

are botnets. This approach allows to identify such closed

user groups. The idea behind this approach is to find IP

connectivity between IP addresses. After clustering the in-

side IP addresses over a long time, it is possible to check if

some clusters stay available and what kind of changes hap-

pened on the members. The experiments conducted here

demonstrate that there are some clusters remain active

with a relatively small change in their members. The ex-

periments conducted here are to cluster the inside IP ad-

dresses, hence, the closed groups are inside groups of hosts

having the same traffic behavior, and they are connected

to the same outside IP address for a long time. If the clus-

tering were done on the outside IP addresses, the results

would be able to find outside closed groups with an inten-

tion in some specific inside hosts. Within one hour from

14:00 to 17:00, it was possible to identify 7 closed groups.

Closed groups are identified when the same outside IP ad-

dress/s remain connected with the same list of the inside

IP addresses for a long time. Table 2 shows DFI summary

applied on the corresponding clusters’ members for the

observation period. An abnormal behavior was noticed in

the behavior of members of cluster id 177, where a single

outside IP address requesting several services on common

ports (like 80, 8080, and 8081). We compared the cluster-

ing results of successive periods for a long time, and we

found that the traffic behavior has not changed. 

6.3. Outliers 

Outliers are IP addresses that do not have any sim-

ilar connectivity with other inside IP addresses. Experi-

ments are conducted to identify some of these outliers.
Table 3 shows the network behavior of some outlier in-

side IP addresses. We found that most of these IP ad-

dresses use some network services over UDP protocol.

They send/receive small size packets (average packet size

is less than 80bytes/packet). Some of these IP addresses re-

main active for a relatively long time. From the described

dataset, the most active list of outlier IP address was ex-

tracted from the period 14:0 0-15:0 0. A list of 39 inside IP

addresses were found active in each 5-minutes time slot

over the study period. 

7. Conclusion 

This paper presented an approach to discover IP rela-

tionship to setup a clustering model based on IP connec-

tivity of IP addresses inside the managed domain network

based on their connectivity with the outside network by

observing traffic at the border router. The objective is to

setup hosts’ profiles, however, since it is not efficient to

setup such profiles for each IP address, it is more effi-

cient to discover clusters of IP addresses with similar be-

haviors. Instead of clustering hosts based on their traffic

patterns, this paper proposed a clustering strategy based

only on the IP connectivity without any information about

protocol, port, packets. Our experimental results demon-

strated that this approach can discover communities from

real managed domain networks. The approach is discussed

and evaluated using concepts from graph partitioning, such

as modularity and community detection definitions, it has

been also validated by deep flow inspection DFI. To the

best of our knowledge, this is the first step forward in the

research to discover social communities of IP networks by

splitting network into inside and outside networks and dis-

cover communities’ structure among inside network based

on similarity of connectivity with the outside networks.

The proposed approach is implemented in a real network,

and the quality of clustering significantly fulfilled our ex-

pectations. This work has practical benefits in network

security, network management, and the monitoring and

analysis of large networks. The future work will include

improving the algorithm for further reduction in the cal-

culations complexity of the proposed approach. 
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