
Not So Cooperative Caching in Named Data
Networking

Xiaoyan Hu∗, Christos Papadopoulos†, Jian Gong∗, Daniel Massey†
∗School of Computer Science and Engineering, Southeast University, Nanjing, P. R. China

†Computer Science Department, Colorado State University, Fort Collins, USA
Email: {xyhu, jgong}@njnet.edu.cn {christos, massey}@cs.colostate.edu

Abstract—This work designs and implements a Not So Co-
operative Caching system for Information Centric Networking
(ICN). We consider a network comprised of selfish nodes; each is
with caching capability and an objective of reducing its own access
cost by fetching data from its local cache or from neighboring
caches. These nodes would cooperate in caching and sharing
content if and only if they each benefit. The challenges are to
determine what objects to cache at each node and to implement
the system in the context of Named Data Networking (NDN),
a large effort that exemplifies ICN. Our results include both a
solution for the Not So Cooperative Caching problem and an
NDN design and implementation. We evaluate our approach by
deploying the system we developed on PlanetLab and show that
it improves the content hit ratio by up to 13%.

I. INTRODUCTION

This work proposes a scheme that enables selfish nodes
to cooperate in caching and shows how the scheme can be
implemented in an information centric architecture, in par-
ticular Named Data Networking (NDN) [1] where caching is
pervasive in network nodes. We consider a network comprised
of selfish nodes; each is with caching capability and an
objective of reducing its own access cost by fetching data
from its local cache or from neighboring caches. We assume
the access cost of retrieving data from local cache is minimal,
and that the cost of retrieving data from neighboring nodes
is small as compared to fetching the data from an original
content server. For example, fetching data from local cache or
from a neighboring cache may reduce latency or reduce load
on potentially expensive upstream links. The challenges are
to determine what objects to cache at each node (an object
placement) and to implement the system in an information
centric network.

Program sources

A B

C

10

20

30

300 300

300

Fig. 1: Three set-boxes in a neighborhood.

Figure 1 shows how three set-top boxes, A,B,C can
benefit from cooperation. The boxes record programs �,F,©
separately. None of these boxes has the capacity to store
all these programs, but the set-top boxes could cooperate in
selecting what programs to record and then share the programs.
If node A has not cached programs F and ©, it is preferable
for A to fetch them from B or C rather than from the original

source. But an individual’s set-top box is selfish and would
choose to cooperate if and only if its own cost is reduced.

This work is similar to “Cooperative Caching” [2], [3], but
dubbed Not So Cooperative Caching (NSCC) as each node
aims to only maximize its own benefit rather than the common
welfare. A node would join the cooperation if and only if its
access cost will be reduced by at least some amounts so as to
at least cancel out the overhead in cooperation, which is the
minimum participation requirement. Nodes can freely join and
leave the system based on whether their minimum participation
requirement can be satisfied.

The two main problems of this work are as follows.
First, we try to identify feasible object placements. We say
an object placement is feasible if it satisfies the minimum
participation requirements of all nodes in the current system.
In other words, by cooperating in making caching decisions
and sharing cached content, each node gains at least some
minimum benefit. Second, we show how the scheme can be
implemented in NDN, one paradigm of Information Centric
Networking (ICN). We design a systematic model in NDN
for nodes to exchange information for the object placement
decisions and serve users’ requests.

The rest of the paper is organized as follows. Section II
formally defines the NSCC problem. Section III describes our
design and implementation of a Not So Cooperative Caching
application that can be deployed at an organization without
requiring any modification to other nodes in the organization.
Our NSCC nodes collaborate and solve the object caching
as described in Section III-C. We deployed our system on
PlanetLab and Section IV presents the preliminary results
which verify the effectiveness of the NSCC system. We discuss
the impact of the NSCC system on the network as well as
the overhead of the system in Section V. Finally, Section VI
concludes the work.

II. NOT SO COOPERATIVE CACHING

We formally define the NSCC problem here. We are given
a set of n selfish nodes forming a “NSCC group”, and a set of
m unit-sized objects. The access pattern of node i is described
by rik, i.e., the rate at which node i requests object k.

Each node aims to minimize its own access cost. Our
access cost model follow the one defined in [4] and later
used in several works [5], [6]. Under this model, the cost
for accessing an object from a node’s local cache is tl, from
another node in the group tr and from an origin server ts, with
tl < tr < ts. i.e., it is preferable for a node to access objects
from neighboring caches rather than from original sources.
These values may denote averages, and are assumed to be

Globecom 2013 - Next Generation Networking Symposium

978-1-4799-1353-4/13/$31.00 ©2013 IEEE 2263

the same for all nodes in order to simplify the analysis.
The overall cost of a node depends on where objects are

placed. Each node can cache some objects locally. Node i
must decide which objects to place in its cache. Let Si and
Pi denote the cache size and the set of cached objects at node
i respectively. Similarly, all other nodes decide which objects
to place in their caches. The result is an object placement
P = {P1, P2, · · · , Pn}. The cost of node i depends on the
placement P . Let Ci(P) denote the cost of node i under object
placement P and is computed as follows:

Ci(P) =
∑
k∈Pi

riktl +
∑
k/∈Pi
k∈P−i

riktr +
∑
k/∈Pi

k/∈P−i

rikts (1)

The first term is the sum of costs for serving requests for
objects locally cached at node i and the cost for serving such
an object k ∈ Pi is the product of its request rate rik and the
local access cost tl. The second term is the sum of cost for
serving requests for objects cached in neighboring nodes in
the group. Our terminology follows the one established in [5].
Let P−i = P1 ∪ · · · ∪ Pi−1 ∪ Pi+1 · · · ∪ Pn denote the set of
objects collectively held by nodes other than node i under the
global placement P . The cost of serving requests for an object
k /∈ Pi, k ∈ P−i which is cached in neighboring nodes, is the
product of its request rate rik and the access cost from this
node i to the neighboring node that caches object k, tr. The
third term is the sum of costs for serving requests for objects
neither cached locally nor cached in neighboring nodes. For
serving such an object k /∈ Pi and k /∈ P−i, the cost is the
product of its request rate rik and the access cost from the
original source, ts.

Given this definition, our objective is to 1) find a feasible
object placement that reduces the individual node access costs
by at least some minimum amount and 2) show how the
scheme can be implemented in NDN.

III. THE SYSTEM DESIGN

We designed a Not So Cooperative Caching system in
NDN. Our NSCC design runs at the application level and
makes use of the CCNx library [7]. An NSCC node is similar
to a proxy and can be deployed by any organization. The
organization simply configures routing so that the NSCC node
is located on the path from users to the Internet. No changes
are required to other NDN nodes or the underlying CCNx.

We offer a specific solution to the object placement prob-
lem in Section III-C. However, our design is independent of
the object placement algorithm and allows one to use different
algorithms for object placement, provided that the nodes agree
upon the placement algorithm to be used.

Each NSCC node consists of four components: Inter-
est/Data Processor which processes users’ requests for Data,
request rate synchronizer which synchronizes the request rate
information at NSCC nodes, Compute Cache which computes
the global object placement at NSCC nodes, and Local Cache
which is responsible for caching the objects specified by the
Compute Cache. Each component is a “black box” to the
others knowing nothing about how the other components do
their jobs. These components interact with other components,
if necessary, through their input and output interfaces.

CCNx
user

CCNx
user

CCNx
user

CCNx
Gateway

 NSCC
 node

CCNx
Gateway
 CCNx
Gateway

Fig. 2: The NSCC scenario.

A. Interest/Data Processor
We begin our discussion of NSCC with Interest/Data

processor. As the name suggests, this component is responsible
for processing Interest packets and tracking the local popularity
of content. Figure 2 illustrates the scenario under which the
Interest/Data processor of an NSCC node works. The Inter-
est/Data processor must meet the following three requirements:

• Tracking Local Popularity: the Interest/Data proces-
sor listens to all Interests from all local users and
calculates local popularity of content.

• Satisfying Interests From Local Users: if an Interest
is received from local users, the Interest/Data proces-
sor returns the data from local cache, or requests it
from other NSCC node, or fetches it from the Internet.

• Processing Interests Not From Local Users: besides
the Interests from local users, other Interests may be
from request rate synchronizer of local node or other
NSCC nodes, or from other NSCC nodes requesting
data that may be cached at this node.

To track local popularity, the NSCC node is located on the
default path from users to the Internet and its Interest/Data
processor installs a route for the root name prefix pointing to
the face of the NSCC application itself at this node such that
each Interest (except the Interests sent from the Interest/Data
processor itself) would be forwarded to the NSCC application.
A received Interest might come from local users, or other
NSCC nodes, or from the request rate synchronizer. An NSCC
node only needs to track local content popularity and hence
only the Interests from local users would be used for tracking
local popularity. Interests from either other NSCC nodes or
from the request rate synchronizer begin with known common
prefixes and thus can easily be distinguished from the Interests
sent by local users. And for tracking local popularity, this
work introduces a space efficient method with double Counting
Bloom Filter (CCBF) to identify popular content that may be
cached later and whose request rate information needs to be
exchanged in the request rate synchronizer. Please refer to [8]
for the introduction of Counting Bloom Filter (CBF). Figure
3 illustrates how to identify popular content with CCBF. The
PopularData CBF is a CBF that is used to test if a Data has
already been filtered to be popular and record the access times
of such Data. And Filter CBF is another CBF that is used to
filter popular Data. When an Interest for Data with name ID
arrives, k different hash functions are used to map ID into k
different counters and its following process is as follow:

• If the values of the k counters in PopularData CBF are
all larger than 0, the Data has already been filtered to
be popular and then update its corresponding access
times by increasing the values of the k counters in
PopularData CBF by 1.

Globecom 2013 - Next Generation Networking Symposium

2264

• Otherwise, the requested Data is not yet popular
enough and is being filtering for the final decision.
This is done by increasing the values of the k counters
in Filter CBF by 1. If the values of these k counters in
Filter CBF are now all larger than the preconfigured
threshold x – the definition of popular content, Data
ID is filtered to be popular at this time. Then decrease
the values of the k counters for Data ID in Filter CBF
by the threshold x, increase the value of the k counters
for Data ID in PopularData CBF by 1, and create a
popular Data record for Data ID.

CCBF is similar as the algorithm in [9] which applies
double Counting Bloom filter to identify large flows in ackbone
network, analyzes its false positive, and proves its effectiveness
and space efficiency with extensive experiments.

PopularData_CBF

Filter_CBF

Not yet popular enough

Popular Data
for storage

Popular Datah1(ID), h2(ID), ..., hk(ID)
Data ID

Fig. 3: Popular content identification with CCBF.

There are the three following possibilities of satisfying
Interests from local users:

1) The Interest/Data processor consults its local cache to
see if the requested data is at local cache. If it is present, the
Interest/Data processor returns it to the requester and must not
send the Interest anywhere else. To ensure that the Interest
would not be sent anywhere else, the route for this data name
at local gateway points to only this NSCC application.

2) Otherwise if the requested data is covered by another
NSCC node, the Interest/Data processor must request the data
from that node and send it back to the requester, but must not
send the Interest anywhere else. The solution to request data
from other nodes is achieved by appending an NSCC common
name prefix in front of the Interest and setting up a route for
this new name pointing to the default gateway. In this fashion,
the resulting Interest will only be sent to members in the NSCC
group. The Interest/Data processor at each NSCC node installs
a route for the NSCC common name prefix pointing to itself
such that it would receive the Interests sent from other NSCC
nodes requesting data that may be cached at this node.

3) If the requested data is not covered by any NSCC
node, it should be fetched from the Internet. The Interest/Data
processor installs a route for the original data name pointing to
the default gateway. When the data returns, the Interest/Data
processor simply forwards it back to the requesters. Neither
local users nor gateway need to know that NSCC also receives
a copy of the Interest.

To process Interests not from local users, the Interest/Data
processor listens for Interests from other NSCC nodes or from
request rate synchronizer. It might receive Interests for data
that it has cached. All such Interest names must start with
the NSCC common name prefix. The Interest/Data processor
strips off the NSCC common prefix, searches its local cache,
returns the data with name /NSCC prefix/original name
if found in local cache or ignores the Interest if it doesn’t have
the data or the Interest is from request rate synchronizer.

B. Request Rate Synchronizer
Given the local popularity computed by the Interest/Data

processor, the request rate synchronizer is responsible for
coordinating request rate with other NSCC nodes. In other
words, this component reports local popularity to other nodes
and learns what content is popular at other nodes. There are
the following three requirements for request rate synchronizer:

• Fetching Local Request Rate Information: the re-
quest rate information is obtained from the Inter-
est/Data processor component.

• Request Rate Synchronization: it must maintain an
identical view of shared request rate data set all the
time and changes in the request rate are reported to the
compute cache component which then decides what
data should be cached at each node.

• Membership Maintenance: it maintains a roster of
participants. The events of nodes leaving or joining
the group should be notified to all live nodes in the
group so that they can make right caching decisions
considering the caching in all group members.

To fetch local request rate information, request rate syn-
chronizer simply invokes an Application Program Interface
(API) to read the popularity records managed by the In-
terest/Data processor. The request rate synchronization and
membership maintenance are important for the system. This in-
formation serves as the input to the object placement algorithm,
discussed later in Section III-C. The request rate synchronizer
must obtain data from all other nodes and this data should be
consistent with that at other nodes. If any NSCC node has a
wrong roster of NSCC nodes in the group or has a wrong view
of the request rate at another node, compute cache could make
a wrong decision about the global object placement.

The requirements of request rate synchronization and mem-
bership maintenance are similar as that in traditional multi-
person conference or multi-user chat. Many existing applica-
tions use a central-server based implementation, where every
participant synchronizes its data with a centralized server.
However, such designs lead to traffic concentrations at the
server and make the applications vulnerable to the single point
of failure. Zhu et al. evolves a distributed data synchronization
idea to design a serverless multi-user chat over NDN [10]
(based on SYNC protocol1 which offers reliable data synchro-
nization) taking full advantage of the self-identifying nature of
content and NDN’s nature support of multicast.

Figure 4 illustrates the design of the request rate syn-
chronizer. The design of request rate synchronizer has two
main components: data set state memory and data storage
(SYNC slice) as illustrated in Figure 5. The data set state
memory maintains the current knowledge of the request rate
information set in the form of digest tree, as well as main-
tains history of the data set changes in the form of digest
log. Request rate synchronizers interact using two types of
Interest/Data message exchanges: synchronization (sync) and
request rate data. A sync Interest represents the sender’s
knowledge of the current request rate data set in the form
of cryptographic digest, obtained using digest tree, and is
delivered to every other participant by periodically sending
the locally generated sync Interest to the broadcast namespace

1http://www.ccnx.org/releases/latest/doc/technical/SynchronizationProtocol.html

Globecom 2013 - Next Generation Networking Symposium

2265

Request Rate Synchronizer

Data set state memory

Digest tree

Digest log

Data Storage

Actual request rates

N
D

N
 A

P
I

Interest/Data Processor

Get local request rates

Compute Cache

Fetch request rates

Sync Interests

Sync Data

Request rates Interests

Request rates Data

Fig. 4: Request rate synchronizer.

Root digest

Node A's digest Node B's digest

A's prefix A's seqNo B's prefix B's seqNo

Fig. 5: Digest tree.

of these synchronizers, /ndn/broadcast/NSCC/group, such
that the request rate synchronizers at other NSCC nodes would
receive it. Any recipient of the sync Interest who detects that
it has more information, satisfies this Interest with a Data
packet that includes the names of the missing part of the data
set and the actual data of request rate information is named
under the namespace of /ndn/nodename/NSCC/group/
appended with corresponding sequence number. Common state
and knowledge difference discovery is performed using the
digest log. The log is a list of key-value pairs, where the key
is the root digest and the value field contains the new producer
statuses that have been updated since the previous state. As
soon as any participant discovers new knowledge about the
request rate information state, it sends out request rate Interests
to pull actual request rate information and multicast helps the
delivery of request rate information.

For the management of the roster, an NSCC node is
added to the roster when its presence message to the group
is received. The participants periodically send “heartbeat”
messages if they are in the group. If nothing is heard from
an NSCC node for a certain amount of time, the NSCC node
is no longer considered as a current participant of the group.

C. Compute Cache
The request rate synchronizer provides compute cache with

a view of object popularity at all the participants. The objective
now is to start a new round to determine what objects should
be cached locally telling the local cache what it should contain
and infer what other nodes would cache so that the Inter-
est/Data processor can determine if the requested data is cov-
ered by other NSCC nodes. For this specific component, we do
not invent a new algorithm to find a feasible object placement,
but borrow the game theory approach from Laoutaris et al. [5].
In this approach, these NSCC nodes are sorted in ascending
order by their names. With the global view of request rates

information at all NSCC nodes, the compute cache component
first computes the intermediate caching decisions at each node
assuming these nodes do not cooperate at all. Namely, each
node caches the most top popular objects following their
cache size constraints. Then based on the intermediate caching
decisions, the object placements at nodes (i.e., best responses)
are decided one by one according to their order. At this step,
the excess gain of a node caching an object is computed based
on whether the object is cached at other nodes, and then each
node greedily caches the most valuable objects as its best
response which is defined as follow:

Definition 1: (Best Response) Given a residual placement
Q−i = {P1, P2, ..., Pi−1, Pi+1, ..., Pn}, the best response for
node i is the placement Pi ∈ Ai such that Ci(Q−i + {Pi}) ≤
Ci(Q−i + {P

′

i }), ∀P
′

i ∈ Ai, P
′

i 6= Pi where Ai is the set of
all the possible object placements at node i.

gik(Q−i) denotes the excess gain incurred by node i from
caching object k under the residual placement Q−i and is
defined as follow:

gik(Q−i) =

{
rik(ts − tl) for k /∈ P−i,
rik(tr − tl) for k ∈ P−i.

(2)

The best response at node i under Q−i is computed as
follow: objects are sorted in descending order by gik(Q−i)
and the Si most valuable objects are selected to cache. In
this way, Laoutaris et al. proves that a feasible global object
placement is found such that each node benefits. For the
detailed description of the algorithm, please refer to [5].
Note that different algorithms for the NSCC problem can be
configured in the compute cache by the operators of the NSCC
nodes in the future without interfering with other components.

D. Local Cache
The final component implements the local cache. The

compute cache tells the local cache what the cache should
contain and it fetches the data from the publishers and stores
them in the local cache. Whenever the local cache needs to
fetch data, a route for the corresponding Interest pointing to
the gateway can be installed and then uninstalled when the
data is returned.

As described in the Interest/Data processor compo-
nent, access to data covered by another NSCC node is
obtained by prepending a prefix specific to the NSCC
group. For example, to fetch /CSU/cs/hu/note.txt,
the Interest/Data processor will send a new Interest
/NSCC/group/CSU/cs/hu/note.txt. To answer this Inter-
est, the local cache should create a new Data packet with the
name /NSCC/group/CSU/cs/hu/note.txt. The original
/CSU/cs/hu/note.txt Data packet becomes the content field
and is signed by the NSCC node. To reduce response latency,
the local cache component generates the corresponding new
Data for each Data that it should hold so that it can reply
the requests for the Data directly without invoking the data
generation process repeatedly. Note that the actual Data should
be extracted before it is sent back to the users and this is
performed by the Interest/Data processor.

And there is another design about how to record the cached
data to facilitate the Data lookup process. In NDN, an Interest
can be satisfied by a Data with name equal to or more specific
than the name specified in the Interest. For example, the Data
with name /CSU/cs/hu/note.txt can satisfy an Interest with

Globecom 2013 - Next Generation Networking Symposium

2266

/CSU

prefix Chain of content

/CSU/cs/hu/note.txt /CSU/cs/hu/paper.txt /\

/CSU/cs/hu/note.txt /CSU/cs/hu/paper.txt /\

/CSU/cs/hu/note.txt /CSU/cs/hu/paper.txt /\

/CSU/cs

/CSU/cs/hu

/CSU/cs/hu/note.txt

/CSU/cs/hu/note.txt

/CSU/cs/hu/note.txt /\

/CSU/cs/hu/paper.txt /CSU/cs/hu/paper.txt /\

Fig. 6: The record of cached Data. A node in chain of content is a
pointer to content with the specified name.

name /CSU/cs/hu or /CSU/cs/hu/note.txt. So the local
cache organizes the pointers to these objects under a common
prefix as a chain as illustrated in Figure 6.

IV. EVALUATION

We have implemented the NSCC system proposed in
section III. In this section, we present the preliminary results
of the empirical evaluation of the system. Our experimental
results verify the effectiveness of the NSCC system.

A. Experiment Setup
We conducted a number of experiments by deploying the

NSCC system on PlanetLab [11]. Figure 7 illustrates the
experiment setup for not so cooperative caching. We installed
CCNx library on seven PlanetLab nodes. Three nodes run
our NSCC application, and also run NDN traffic generator
application that simulates Interests sent by local users. The
three nodes serve as the users who send request traffic as
well as the NSCC nodes. An additional three gateway nodes
are responsible for forwarding Interests to other gateways or
the content server when necessary (at each gateway, routes
pointing to other gateways or the content server are set up
with the tool ccndc [12]). The seventh node is our content
server node representing the rest of the network. If nodes are
unable to fetch data from any NSCC node, the content server
provides the data.

node1
users

Ndoe2
users

gate
way3

gate
way2

node3
users

gate
way1

Server

Fig. 7: The deployment of experiments.
We assume there are 1000 unit-sized objects in the system

and the access pattern at any node follows a Zipf distribution
with exponent s (Zipf preference). This has been shown to
be a good model for the popularity of web objects [13]. To
evaluate the impact of access patterns on the performance of
NSCC, we consider the following two cases:
• Case 1: the access patterns at the three nodes follow

Zipf distribution with a typical exponent 0.73 (see
e.g., [14], [15]) and the rank of objects remains the
same for all nodes.

• Case 2: the access patterns at the three nodes follow
Zipf distribution with exponent 0.73, but the rank of
objects at each node is randomly determined and thus
they are different at these nodes.

We also consider the impact of cache sizes (in terms of the
number of objects and these nodes are with the same cache
sizes in each experiment) on the performance of the NSCC
system and compare the hit ratio of each node under NSCC
with that under Greedy Policy (GL), i.e., each node works
independently without sharing and caches its most popular
content, which is the most common caching algorithm for
selfish caches [5] (traditional cooperative caching algorithms
such as [3], [16] are improper here for selfish caches). In each
experiment, the NDN traffic generator applications at the three
NSCC nodes each send 100000 Interests to request content
following their Zipf access patterns. In compute cache, we set
tl = 0, tr = 1 and ts = 2. The Interest/Data processor at each
node additionally counts the hit ratio of its users’ requests and
each experiment is repeated for 100 runs.

B. Experiment Results

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

10 20 30 40 50 60 70 80 90 100

H
it

ra
tio

Cache size

Zipf preference (s=0.73), same rank

GL, node 1
NSCC, node 1

GL, node 2
NSCC, node 2

GL, node 3
NSCC, node 3

(a) Case 1.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

10 20 30 40 50 60 70 80 90 100

H
it

ra
tio

Cache size

Zipf preference (s=0.73), random rank

GL, node 1
NSCC, node 1

GL, node 2
NSCC, node 2

GL, node 3
NSCC, node 3

(b) Case 2.

Fig. 8: The hit ratios of the three nodes under GL and under
NSCC when cache sizes of nodes vary.

Figure 8(a) and Figure 8(b) illustrate how the cache capac-
ity of nodes impacts the hit ratios of the three nodes under
NSCC and that under GL when these nodes follow the above
mentioned two cases of access patterns respectively. It can
be seen that in both cases, all nodes have a similar yield
(to some degree, the system offers fairness to these nodes)
under NSCC as compared to under GL in terms of hit ratio
and the improvement in hit ratio can be as much as 13%.
And when nodes are with small cache sizes, if these nodes
are with access patterns of case 1, their cooperation under
NSCC would be more helpful (improving hit ratio by about
6%) as compared to that if they are with access patterns of

Globecom 2013 - Next Generation Networking Symposium

2267

case 2 (improving only by about 1%). This is because the
small caching space accommodates a small number of content.
If these nodes follow the identical access patterns, the cached
content tend to be useful for all these nodes. Otherwise, as the
ranks of content at these nodes are different, each node tends
to cache content only useful for itself due to its selfishness.
Then the content cached at node 1 may be little popular at
the other two. But as the cache sizes increase, more and more
content can be cached in these nodes. Even if the ranks of
content at these nodes are different, each node caches some
content valuable for itself but also valuable for the others and
can be shared by them.

V. DISCUSSION

When new request rates information is reported to the
compute cache component, compute cache starts a new round
of a decision process. Each NSCC node adapts to the current
access patterns and gains benefits from other nodes in terms
of cache hit ratio improvement, i.e., access cost reduction.
As more users’ request traffic is satisfied by these NSCC
nodes, the network is less congested due to the relief from
delivering these requests and their matching data between the
requesters and their content servers, and related content servers
are less overloaded by users’ requests and thus can quickly
response to others’ requests. But NSCC also incurs overhead
resulting from the request rate synchronization, the object
placement decisions, and serving requests for data locally
cached from other NSCC nodes. As the frequency that request
rate synchronizer updates information determines the overhead
in request rate synchronization and object placement decisions,
a balance should be made between the gain in adapting access
patterns and the overhead in computation and communication
by adjusting the frequency of updating request rates infor-
mation. And the CCBF for popular content identification at
each node makes contribution to the reduction in space and
communication cost. Our ongoing work is conducting more
extensive larger-scale experiments on evaluating the overhead
of the NSCC system and analyzing how to balance between
the request rate synchronization frequency to quickly adapt to
users’ dynamic demand and the overhead involved.

VI. CONCLUSION & FUTURE WORK

This work proposes a scheme that enables selfish nodes
to cooperate in caching (which we call Not So Cooperative
Caching (NSCC)) and shows how the scheme can be imple-
mented in Named Data Networking (NDN), a promising future
Internet architecture, where caching is pervasive in network
nodes. We consider a network comprised of selfish nodes;
each is with caching capability and an objective of reducing its
own access cost by fetching data from its local cache or from
neighboring caches. These nodes would cooperate in caching
and sharing content if and only if they each benefit.

We provide an implementation of the NSCC using a
four component design. Our design includes a request rate
synchronization component that coordinates membership in
the NSCC group and ensures that nodes have a common
view of object popularity distribution at different nodes. Our
compute cache component solves the object placement and
calculates what data should be stored in the local cache. The
local cache is responsible for keeping and managing data.
And the Interest/Data processor keeps track of local content
popularity and processes Interests from local users or other

NSCC nodes. Through deployment on PlanetLab, we explored
the potential benefits of NSCC. Our system can be deployed at
an organization without requiring any changes to other nodes
at the organization and without any changes to the underlying
CCNx library.

This work provides the foundation for a Not So Coopera-
tive Caching system and our next step is to conduct extensive
larger-scale experiments on the evaluation of the overhead of
the system and add an Error Checker component to cope
with cases where the selfish nodes unintentionally fail or
intentionally misbehave to gain individual advantage.

ACKNOWLEDGMENT

This work was sponsored by the National Grand Fun-
damental Research 973 program of China under Grant
No.2009CB320505, the National Nature Science Foundation
of China under Grant No.60973123 and US NSF under Grant
No.1039585. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of those sponsors.

REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. Braynard, “Networking named content,” in CoNEXT, 2009.
[2] J. Wang, “A survey of web caching schemes for the internet,” SIG-

COMM Comput. Commun. Rev., vol. 29, pp. 36–46, October 1999.
[3] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for

content distribution networks,” in Proceedings of the 29th conference
on Information communications, ser. INFOCOM’10. Piscataway, NJ,
USA: IEEE Press, 2010, pp. 1478–1486.

[4] A. Leff, J. L. Wolf, and P. S. Yu, “Replication algorithms in a remote
caching architecture,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 11,
pp. 1185–1204, Nov. 1993.

[5] N. Laoutaris, O. Telelis, V. Zissimopoulos, and I. Stavrakakis, “Dis-
tributed selfish replication,” IEEE Trans. Parallel Distrib. Syst., vol. 17,
no. 12, pp. 1401–1413, Dec. 2006.

[6] E. Jaho, I. Koukoutsidis, I. Stavrakakis, and I. Jaho, “Cooperative
content replication in networks with autonomous nodes,” Comput.
Commun., vol. 35, no. 5, pp. 637–647, Mar. 2012.

[7] Ccnx project. Http://www.ccnx.org/.
[8] A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher, “Network

applications of bloom filters: A survey,” in Internet Mathematics, 2002,
pp. 636–646.

[9] H. Wu, J. Gong, and W. Yang, “Algorithm based on double counter
bloom filter for large flows identification,” Journal of Software, vol. 21,
no. 5, pp. 1115–1126, 2010.

[10] Z. Zhu, C. Bian, A. Afanasyev, V. Jacobson, and L. Zhang, “Chronos:
Serverless multi-user chat over ndn,” NDN, Technical Report NDN-
0008, October 2012.

[11] Planetlab. Http://www.planet-lab.org/.
[12] Ccndc. Http://www.ccnx.org/releases/latest/doc/manpages/ccndc.1.html.
[13] D. N. Serpanos, G. Karakostas, and W. H. Wolf, “Effective caching

of web objects using zipf’s law,” in IEEE International Conference on
Multimedia and Expo (II), 2000, pp. 727–730.

[14] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in INFOCOM
(1), 1999, pp. 126–134.

[15] H. Gomaa, G. Messier, R. Davies, and C. Williamson, “Media caching
support for mobile transit clients,” in Proceedings of the 2009 IEEE In-
ternational Conference on Wireless and Mobile Computing, Networking
and Communications, ser. WIMOB ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 79–84.

[16] J. Ni and D. H. K. Tsang, “Large-Scale Cooperative Caching and
Application-Level Multicast in Multimedia Content Delivery Net-
works,” IEEE Communications Magazine, vol. 43, pp. 98–105, May
2005.

Globecom 2013 - Next Generation Networking Symposium

2268

