
Adaptive Sampling for OpenFlow Network Measurement
Methods

Guang Cheng
School of Computer Science and Engineering

Key Laboratory of Computer Network and Information
Integration (Southeast University), Ministry of Education

Nanjing, P.R.China, 211198
gcheng@njnet.edu.cn

Jun Yu
School of Computer Science and Engineering

Key Laboratory of Computer Network and Information
Integration, (Southeast University), Ministry of Education

Nanjing, P.R.China, 211198
jyu103.cn@gmail.com

ABSTRACT
OpenFlow provides a statistics collection scheme for per-�ow and
aggregate metrics at a user-speci�ed frequency. However, periodic
polling for �ow statistics cannot well balance the tradeo� between
measurement accuracy and limited control channel bandwidth. To
further discuss the resource/accuracy tradeo�, this paper extends
OpenFlow protocol to add sampling action for each monitoring
�ow entry, and systematically sample the matching packets to infer
the �ow-level statistics. Although tra�c sampling can somehow be
error-prone, it will provide near-real-time measurements of �ow
dynamics and determine its accurate polling frequency, which the
polling-based approach cannot achieve. In this paper, we propose a
per-�ow sampling solution to instruct the controller to adaptively
adjust polling frequency, then evaluate it in the context of link
utilization monitoring.

KEYWORDS
Sampling, Software De�ned Networking, OpenFlow Protocol, Adap-
tive Measurement
ACM Reference format:
Guang Cheng and Jun Yu. 2017. Adaptive Sampling for OpenFlow Network
Measurement Methods. In Proceedings of CFI’17, Fukuoka, Japan, June 14-16,
2017, 7 pages.
https://doi.org/10.1145/3095786.3095790

1 INTRODUCTION
The emergence of Software-De�ned Networking, Network Vir-
tualization and Network Function Virtualization has led to the
development of varieties of novel network applications. The unique
attributes of these applications, such as dynamic optimization of
network resources and construction of virtual network, require
accurate and real-time statistics of massive network tra�c at dif-
ferent time granularities. Network measurement needs to satisfy
diverse monitoring requirements, provide more accurate and real-
time measurement results, but also supports the optimal scheduling
and dynamic loading of monitoring tasks. By separating the control
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CFI’17, June 14-16, 2017, Fukuoka, Japan
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5332-8/17/06. . . $15.00
https://doi.org/10.1145/3095786.3095790

plane and the data plane, SDN [5, 16] makes it possible for the
measurement tasks to have a global view of the network to coordi-
nate and control dynamic tra�c monitoring in multi-switch. With
software-de�ned measurement, the controller can schedule �ow
statistics collection tasks at di�erent temporal and spatial scale,
and optimize the deployment of network-wide measurement tasks.
As the network tra�c continues to grow, the key challenge for
the network measurement is how to obtain accurate �ow statistics
in the high-speed network with very limited computational and
storage resources [15]. For instance, each slot of new generation of
data center architecture can support one or more ports of 40Gbit/s
or 100Gbit/s, and the exchange capacity is at 1 10Tbit/s level. There-
fore, the key challenge for modern network management is how
to measure the high-speed network tra�c more accurately and
e�ciently [4].

Flow programmable based network provides performance and
reliability requirements for a wide range of network applications,
such as rapid failure recovery, fast and reliable data transmission.
In order to adapt to the changes of network tra�c and architecture
according to the pre-de�ned measurement goals, we need to con-
tinuously monitor the utilization of each link. SDN has emerged
as the main technology for the next generation of network archi-
tecture, and supports scheduling for a variety of concurrent and
dynamic instantiation measurement tasks. There are three ways [1]
for the SDN controller to fetch �ow entries statistics from Open-
Flow switches:1) PacketIn Messages upon the arrival of the �rst
packet of a new �ow; 2) FlowRemoved Messages upon the expiry
of �ow entries; 3) Polling �ow entries counters. Given limited re-
sources and the need to support global optimization and dynamic
scheduling of monitoring strategies, it is important to e�ciently
allocate �ow entries for �ow measurement tasks and coordinate
the polling frequency for �ow statistics. In this paper, we study the
tradeo� between the limited control channel bandwidth and statis-
tics querying accuracy to select the appropriate polling frequency.

The controller can fetch the �ow statistics in the OpenFlow
switches through the control channel at a pre-de�ned polling in-
terval, but periodic polling cannot handle the �ow dynamics and
balance the monitoring accuracy and control channel bandwidth us-
age, making current polling scheme sub-optimal. Network applica-
tions require accurate and real time statistics on network resources
at di�erent aggregation levels, while the monitoring overhead for
statistics collection should be minimal. Many network applications
demand accurate and timely statistics, such as tra�c engineering,
accounting and load balancing. To strike a better balance between



CFI’17, June 14-16, 2017, Fukuoka, Japan Guang Cheng and Jun Yu

statistics collection accuracy and monitoring overhead, we use sam-
pling technique to improve the utilization e�ciency of resources
while satisfying measurement accuracy. Currently, adaptive sam-
pling technique has been widely used in traditional IP networks,
but not been studied in SDN environment.

In order to study the tradeo� between monitoring resources
and accuracy, this paper implements a �exible sampling extension
for OpenFlow, systematically sampling the matching packets to
infer original �ow length. Despite the fact that tra�c sampling
can be error-prone, it can perceive �ow dynamics to instruct the
adjustment of polling frequency. Thus, we propose per-�ow passive
sampling solution to instruct the controller to adaptively tuning
the polling frequency of each �ow.

The rest of the paper is organized as follows. In Section 2, we
overview related work regarding variable rate adaptive data collec-
tion methods used in SDN network measurement, and point out
some advantages and disadvantages of current polling approaches.
Next, we propose an adaptive sampling measurement method based
on SDN framework in Section 3. Section 4 presents an adaptive
polling scheme based on adaptive sampling. In Section 5, we elabo-
rates on the evaluation results of our approach by monitoring link
utilization. Finally, Section 6 concludes this paper and point out
some future directions of our work.

2 RELATEDWORK
Flowsense [13] passively captures and analyses the control mes-
sages between switches and the controller to e�ciently infer link
utilization. It mainly utilizes the PacketIn and FlowRemoved mes-
sages to indicate the start and end time of each �ow. The PacketIn
message is sent by the switch when there is no matching entry
for a new �ow, containing the headers of the packet. The FlowRe-
moved message is triggered by the expiry of the �ow entry, which
is associated with two timeout values. The hard timeout is counted
at the time of the �ow entry installation, while the soft timeout is
counted at the time of last matching packet. Since Flowsense must
wait for all the active �ows at the checkpoint to expire, it would
have a large delay of up to 10s measuring the link utilization.

OpenTM [11] actively queries the number of packets and bytes
for the active �ows from an optimal set of switches, and the focus of
this paper is about to solve the problem of tra�c matrix estimation
accuracy and switches querying cost. The logic of OpenTM is to get
routing information from the controller, �nd the routing path of
each �ow and periodically queries for statistics from switches on the
�ow path. Due to the packet loss, the statistics for a given �ow may
be di�erent from di�erent switches on the path. OpenTM considers
the last switch closer to the destination as the polling switch, which
has most accurate TM compared to any other switches on the same
path. However, it will incur signi�cant overhead on the �rst/last
switches, and the polling frequency is an important factor that
a�ects the accuracy and overhead of TM estimation. OpenTM only
considers the �xed querying frequency for all �ow statistics on
di�erent switches, and the querying frequency can adjust itself for
each source-destination IP pair based on the network performance
(RTT, available bandwidth). However, OpenTM doesnâĂŹt consider
the factor that the polling frequency should quickly adapt to the
�ow dynamics and tra�c �uctuation.

PayLess [3] is a measurement framework built on top of an
OpenFlow controller and provides a high-level RESTful API. This
framework translates the high level primitives from the monitoring
applications and conceals the details of statistics collection and
storage management. In PayLess, the controller sends the Flow-
StatisticsRequest messages to switches to query speci�c �ow in-
formation, and the switch send FlowStatistics-Reply messages con-
taining the duration and byte count of that �ow to the controller.
This paper proposes a variable rate statistics collection method. It
utilizes the collected data in the FlowStatisticsReply messages to
determine whether the �ow rate exceeds a pre-de�ned threshold. If
the threshold is exceeded, the polling frequency for that �ow will
be increased. Otherwise, the polling frequency will be decreased
accordingly. Meanwhile, the algorithm will batch the FlowStatis-
ticsRequest messages together for �ows with the same timeout.
The experimental results show that PayLess is more accurate than
FlowSense in detecting tra�c spikes, and sends out 50% less control
messages than that of periodic polling method.

CeMon [10] proposes an adaptive �ne-grained polling scheme
to optimize the polling scheme for �ow entries statistics. OpenNet-
Mon [12] adaptively adjusts the polling interval in terms of the �ow
behavior characteristics. Sahri N M [8] employs a higher polling
frequency for abnormal �ows. The above solutions dynamically ad-
just polling frequency based on the historical polling records. Since
these approaches cannot get timely feedback through the tra�c sta-
tus on the switches, it is di�cult to accurately fetch measurement
results for each �ow.

Exploring the tradeo� between resource and accuracy is a big
challenge in SDN network measurement research. High-frequency
statistics collection will relatively get more accurate data, which
is particularly e�ective in high-speed network. However, this will
induce signi�cant monitoring overhead on the network when the
tra�c is relatively stable. For this reason, it is necessary to adjust
the polling frequency in real time to strike a better balance between
measurement accuracy and overhead. Although the controller can
fetch the �ow statistics through OpenFlow control messages, this
method cannot timely perceive and adapt to the tra�c dynamics.
Adaptive sampling is used in this paper to estimate the �ow statistics
and better capture the network dynamics. If the sampled tra�c is
stable, then we can get per-�ow statistics through sampling and
increase the corresponding polling interval. If the sampled tra�c is
busy, the �ow statistics estimated by samplingmight be error-prone,
thus we need to decrease polling interval to improve measurement
accuracy.

3 SYSTEM DESCRIPTION
In this section, we presents an overview of the proposed method
and how it uses the sampling technique to accurately measure the
network without incurring too much overhead.

3.1 System Architecture
SDN controllers, like RYU, Floodlight, and NOX, provide a platform
to develop customized network measurement applications that do
not need to be aware of the implementation details and complex-
ity of the underlying network. The SDN control plane performs
direct control over the data-plane elements through a well-de�ned



Adaptive Sampling for OpenFlow Network Measurement Methods CFI’17, June 14-16, 2017, Fukuoka, Japan

interface usually referred to as southbound API. OpenFlow is a
dominant protocol of such example. The SDN control plane also
takes care of collecting real-time �ow statistics at di�erent aggrega-
tion levels (e.g., packet, byte, port, etc.), integrates the raw data and
sends the results to the measurement tasks. However, continuously
polling for �ow statistics will induce signi�cant overhead on both
the control plane and switches. Moreover, it will waste resources
when the tra�c is slow or stable, and cannot timely provides pre-
cise �ow information as the tra�c �uctuates. Hence, an adaptive
OpenFlow monitoring system is required to provide timely and ac-
curate per-�ow or aggregate statistics to the network measurement
application.

To this end, we propose a low cost accurate OpenFlow measure-
ment method based on adaptive sampling. It utilizes the OpenFlow
control messages and adaptive sampling to exercise direct control
over the interval of sending FlowStatisticsRequest. Since the Open-
Flow switches can enable �ow-based management by installing
the low-level rules in switches, the adaptive sampling is also �ow-
based. It can sample the speci�c �ow or aggregate �ow according to
the requirements of measurement applications. By estimating the
original �ow size during each measurement period via sampling,
we can infer the �ow dynamics and adjust the polling accordingly.
The measurement applications don’t have to understand the imple-
mentation details of tra�c sampling and statistics collections.

We describe the architecture of adaptive sampling network mon-
itoring method in Figure 1. In general, it is mainly developed on
the control plane and application plane. The control plane is the
heart of the whole monitoring framework, and is responsible for
making routing decisions, installing forwarding and sampling rules,
and collecting �ow statistics. Therefore, the main components of
the control plane include Flow Status Tracker and Polling Manger.
While in the application plane, we implement the Tra�c Sampling
to analyze the sampled tra�c, and Polling Scheme Optimizer to
generate the new polling interval for each active �ow according to
the sampling results. The measurement tasks can be link utilization,
packet loss and anomaly detection monitoring applications.

Figure 1: Adaptive Sampling Network Monitoring Architec-
ture

Flow Status Tracker. This component is responsible for inter-
cepting PacketIn and FlowRemoved messages to maintain an active
�ows list for each switch. When a switch has no matching entry for
a new �ow, it sends a PacketIn messages containing the �ow iden-
ti�er and datapath id of the switch. The system starts to assign an

initial polling interval and a matching rule to that �ow by sending a
FlowMod message. Similarly, the switch will send a FlowRemoved
message that notify the controller of �ow entry expiry to terminate
the polling action.

Tra�c Sampling. The Tra�c Sampling component installs and
updates sampling rules in the switches to perform the sampling ac-
tion. Since the OpenFlow enabled switches can execute per �ow or
per port action for these matching packets, it can also perform sam-
pling action for these matching packets and decide which packet
should be sampled. To minimize the network overhead, this com-
ponent can tune the sampling ratio based on the sampled tra�c
volume of each �ow.

Polling Scheme Optimizer. We have to adaptively adjust the
polling interval to balance the tradeo� between measurement accu-
racy and overhead on the basis of sampled tra�c. This component
determines the polling frequency for each active �ows in the net-
work. Per �ow sampling can timely capture its �ow spikes and
trend. Therefore, this component can increase the polling interval
as the �ow tra�c is stable, and decrease the polling interval as the
tra�c is busy.

Polling Manager. This module is responsible for exercising sta-
tistics collection on the active �ows. By receiving the results from
Flow Status Tracker and Polling Scheme Optimizer, this module
could update its polling timeout value for the active �ow and re-
move �ow records for expired �ows to avoid wasting resources.
When the timeout value of each �ow is reached, the polling action
is performed to collect the �ow statistics.

3.2 Adaptive Sampling
In this paper, we propose an adaptive sampling approach to accu-
rately and e�ciently measure the OpenFlow network. In order to
perform sampling action on the packets matching on the sampling
�ow entry, we extend the OpenFlow protocol to add two kinds of
sampling: (i) Stochastic sampling: selecting each packet with prob-
ability p, 0  p  1; (ii) Systematic sampling: select m packets from
n consecutive packets. This sampling extension is very �exible, and
has already been discussed in the literature of [9]. To customize the
sampling action for each IP �ow, a separate sampling table is addi-
tionally used for the switch to count and sample these matching
packets while prevent monitoring from interfering in normal tra�c
forwarding. Meanwhile, we set higher priority to those sampling
rules with longer IP pre�xes to get �ne-grained �ow statistics.

Figure 2: The work�ow of tra�c sampling at the data plane



CFI’17, June 14-16, 2017, Fukuoka, Japan Guang Cheng and Jun Yu

In addition to extend the OpenFlow protocol, the sampling algo-
rithm needs to be implemented at the data plane. Figure 2 shows the
work�ow of tra�c sampling at the data plane. The corresponding
sampling algorithms include stochastic sampling and systematic
sampling, and the systematic sampling is used in this paper to infer
the original �ow length. To reduce memory usage, the systematic
sampling will make use of the rx_packets �eld in each �ow entry.
For instance, to select the �rst m packets from each n packets, the
sampling algorithm will decide whether or not to sample the match-
ing packet based on the equation of rx_packets mod n < m [9]. If so,
then the packet will be sampled and forwarded to a reserved port.
Simultaneously, we use a single, centralized collector to gather sam-
ples from all the switches. From these sampled packets, the collector
can infer a variety of information about the network including the
heavy hitter which accounts for a majority of packets or bytes.

Figure 3: Collector Architecture

The architecture of the collector is illustrated in Figure 3. By
gathering these sampled packets from switches, the collector can
roughly estimate the number of per-�ow or aggregate statistics.
For example, it can infer the original number of packets and bytes
in each �ow by simply multiplying the number of sampled bytes
and packets by sampling ratio, N [7]. Although this method might
have some statistical errors in estimating the original �ow length,
it can timely capture the �ow dynamics and be used to adaptively
tune the polling interval.

To mitigate the overhead of sampled tra�c on the collector, an
adaptive sampling is imperative. We can exercise direct control
over the sampling ratio of each �ow by sending FlowMod messages
to maintain the sampled tra�c as stable as possible. The rationale
behind this sampling ratio adjustment is that we sample less packets
from �ows with more tra�c and more packets from �ows with
low �ow rate. If the �ow rate increases, the sampled tra�c for that
�ow will also increase, thus we need to decrease the corresponding
sampling ratio to further reduce the sampling overhead on the
collector. To avoid excessively sending the FlowMod messages, the
adjustment of sampling ratio should consider more historical data
into account.

Suppose pn is the sampling ratio of �ow fi at the nth sampling
interval, then we can derive it from pn�1 with the following equa-
tion:

pn = pn�1�
tn � tn�1

s(tn ) � s(tn�1)
(1)

Where s(tn ) and s(tn�1) are the total number of bytes in the mea-
sured �ow fi at time tn�1 and tn , respectively, � is a coe�cient for
the equation, also known as the expected sampling tra�c volume
for each �ow. The sampling ratio will tune proportionally accord-
ing to the tra�c change rate. However, when the tra�c changes
severely, this scheme may frequently adjust the sampling ratio and
result in continually sending FlowMod messages to the switches.

To this end, we adopt an exponential moving average, also known
as an exponentially weighted moving average (EWMA) [6], to
smooth the value of sampling ratio. EWMA can weight historical
data or recent observations by choosing an appropriate smoothing
coe�cient. The following equation shows the improved version of
sampling ratio adjustment:

p

ewma
n = �pn + (1 � � )pewma

n�1 (2)
Where the observation pn is derived from the equation (1), � (0 <

� < 1) is the smoothing coe�cient. To avoid frequently modifying
the sampling ratio, we should consider more historical data. Thus,
we set the value of � to 0.5 in this paper to avoid the �uctuations of
sampling ratio adjustment. Existing sampling methods are prone
to loss information about small tra�c �ows when massive tra�c
�ows pass the switch, this adaptive sampling scheme enables ad-
justing sampling ratio for each �ow independently, which can be
used to detect the tra�c anomalies like super-spreader which con-
nects a large number of distinct destinations during a measurement
interval [2].

4 ADAPTIVE POLING SCHEME
In this section, we present a low cost and �ne-grained �ow level
polling scheme based on adaptive sampling to measure the net-
work resources. The goal is to fetch timely and accurate statistics,
while bounding the �ow table and monitoring bandwidth usage.
We utilize the passive sampled tra�c to instruct the adjustment
of active polling frequency. Given the limited CPU and control
channel bandwidth resources, it is necessary to actively adjust the
polling interval for di�erent �ows. There are two constraints: (i)
As the number of �ows becomes large, the number of polling from
controller to switches also increases, which result in excessive us-
age of control channel bandwidth; (ii) Given the overall polling
accuracy bound, it is necessary to tune the polling frequency of
di�erent �ows, which means we should maintain a higher polling
interval for stable �ows and a lower polling interval for busy �ows.

4.1 Polling Frequency Tuning
To explore the feasibility of our adaptive sampling approach, we
design a polling frequency tuning scheme to adjust the interval
of sending FlowStatisticsRequest Messages for each �ow. Relying
solely on the control messages cannot timely capture tra�c dy-
namics of each �ow, instead we get the �ow statistics by simply
multiplying the number of bytes by the sampling ratio of each
�ow, p. A pseudo-code of this sampling based polling scheme is
depicted in Algorithm 1. Flow Status Tracker is used to intercept
the PacketIn messages so that the adaptive polling scheme can



Adaptive Sampling for OpenFlow Network Measurement Methods CFI’17, June 14-16, 2017, Fukuoka, Japan

assign a �ow entry to the new active �ow alone with an initial
sampling ratio and statistics collection interval, t seconds. For the
expired �ow entries, it can get the statistics and duration of �ows
matched against it from FlowRemoved messages. To respond to
the timeout event, we �rst calculate the di�erence between the
previous and current estimated byte count against �ows with the
same timeout value. If the di�erence is not above a threshold, say
mean + 2 ⇤ std , wheremean and std are the average and standard
deviation of historical records respectively. The timeout value for
satis�ed �ows will be proportionally multiplied by a small constant,
say � . Otherwise, the timeout value for not satis�ed �ows will be
divided by another constant � to quickly adapt the tra�c changes.
Additionally, the polling interval needs to be controlled within the
range (tmin , tmax ). The rationale behind this tuning algorithm is
that we allocate more control channel bandwidth for �ows that
change signi�cantly and reclaim bandwidth resources for �ows
that are stable in order to balance the tradeo� between resource
and accuracy.

Algorithm 1 Adaptive Polling Scheme
Require: Event e , Historical records records; currently active

�ows acti�e_f lows ; polling interval associated with �ows
pollin�_table;

Ensure: next polling scheme;
1: if e is a packet_in event then
2: f low_b�tes  0
3: f  < f low_b�tes, t ,p >
4: acti�e_f lows  acti�e_f lows [ f //register a new �ow
5: pollin�_table[t] pollin�_table[t] [ f

6: else if e is timeout event for t in pollin�_table then
7: for �ow f in pollin�_table[t] do
8: cur_b�tes  �etSamples(f )/f .p //get sampled statis-

tics
9: last_b�tes  f . f lowb�tes
10: di f f _rate  |cur_b�tes � last_b�tes |
11: if di f f _rate < records .mean + 2 ⇥ records .std then
12: f .t  min(tmax , f .t ⇥ �) // the tra�c is stable
13: else
14: f .t  max(tmin , f .t/�)// the tra�c is busy
15: end if
16: f . f low_b�tes  cur_b�tes
17: move f to pollin�_table[f .t]
18: move cur_b�tes to records
19: send a f low_stats_request to f .dpid
20: end for
21: end if

4.2 Dynamic Resource Allocation
Due to these facts that a large number of �ows present in the net-
work and �ow-based counters are maintained in a power-hungry
TCAM, the number of �ow entries for monitoring is very limited. If
we provide an exact IP �ow with a counter, the TCAM resources in
switches will be quickly exhausted. When the �ow table is nearly
full, the switch needs to age-out the non-active �ows in �ow ta-
ble to reclaim space for new �ows. Frequently changeover may

lead to a large delay in processing the packets and in�uence the
normal tra�c routing. In order to con�gure TCAM counters more
reasonably, we propose a �ow table resources allocation method
based on the adaptive sampling in this section. It will ultimately
�nd the aggregate �ows that account for large tra�c volume in the
network.

In this paper, we monitor tra�c aggregates to tradeo� some
measurement accuracy. Every measurement task starts by measur-
ing an initial set of pre�xes and continues to divide that pre�x or
merge sibling pre�xes on the basis of historical data. We employ the
linear prediction approach to anticipate next monitoring result. The
future values of tra�c aggregates are estimated as a linear function
of historical records. If the actual measurement value falls into the
range of the estimation, it suggests the requirement of merging.
Otherwise, it requires a division for that aggregate �ow entry to
exercise �ner-grained control over the �ows [14].

To be speci�c, the tra�c sampling component maintains a list
of n records for each aggregate �ow. Let �i and pi represent the
sampled bytes and its corresponding sampling ratio at time ti re-
spectively. The predicted value of an aggregate �ow can be derived
with the Equation(3).

�p = �n
1
pn
+
tn � tn�1
n � 1

n�1’
i=1

( �i+1pi ��ipi+1(ti+1 � ti )pi+1pi
) (3)

Then the di�erence between the predicted value and actual value
is calculated using the following equation:

Errorp (n) = k
�n+1
pn+1

��p k (4)

If the di�erence is above a prede�ned threshold, it indicates a
change in tra�c volume and needs to divide that pre�x to get more
�ne-grained �ow statistics. Conversely, if two sibling nodes in the
pre�x trie are both below that threshold, it suggests that the tra�c
for these two neighboring nodes is stable and require merging them
to free up space for other �ows. Similarly, we set the threshold value
tomean+ 3 ⇤std , wheremean and std are the average and standard
deviation of historical records respectively.

5 EXPERIMENTS
In this section, we evaluate the performance of the adaptive sam-
pling basedOpenFlow networkmeasurementmethod from di�erent
aspects such as measurement accuracy and monitoring overhead.
We have also implemented a link utilization monitoring application
using both periodic polling scheme and the proposed polling algo-
rithm to demonstrate the e�ectiveness of our algorithm. The RYU
controller is used as our controller platform for its well de�ned API
and rich set of protocols. To simulate an OpenFlow network, we use
the Mininet to set up a small testbed comprising seven OpenFlow
switches and eight hosts shown in Figure 4. For the experiments
of the adaptive polling algorithm, we have set the minimum and
maximum polling interval to 0.5s and 5s, respectively. And the con-
stant polling interval for periodic polling is set to 1s. We use the
real packet traces of 60s to perform the simulation. For the newly
added �ow entries, we have set the soft timeout to 10s to evict the
long idle �ow entries and initial sampling ratio to the maximum
value to avoid losing information about small tra�c �ows.



CFI’17, June 14-16, 2017, Fukuoka, Japan Guang Cheng and Jun Yu

H1

S2

S1

S3

S5 S6 S7

H2 H3 H4

S4

H5 H8H6 H7

Figure 4: Network Topology for Experiment

5.1 Link Utilization
The link utilization can be obtained by summing up the latest polling
results of each �ow in the monitoring link. Therefore, the utilization
of a particular link can be derived with Equation(5).

Link_Utilization =

n’
i=1

(
b�tes

fi
tn � b�tes

fi
tn�1

tn � tn�1
) (5)

Where the b�tesfitn represents the polling results of fi at time tn .
As shown in Figure 4, we treat the link between the S1 and S2 as
the monitoring link, and use the tcpreplay tool to replay the real
packet traces to perform the simulation. We compare the utilization
obtained by adaptive polling algorithm with that gathered from
periodic polling scheme to evaluate the e�ectiveness of our pro-
posed method. Figure 5 shows the utilization of monitoring link
measured with two di�erent approaches.

Figure 5: Link Utilization
Figure 5 shows the link utilization of two polling scheme. The

link utilization measured by our approach follow closely to actual
results. Although the adaptive polling approach cannot timely cap-
ture the tra�c spikes, it quickly decrease the polling interval of
the responsible �ows to adapt to the tra�c �uctuation. Figure 6
shows the sampled tra�c records of a large �ow. When the �ow
tra�c changes signi�cantly, the sampling ratio gradually adjusts

itself until the minimum or maximum sampling ratio is reached to
stabilize the sampled tra�c. However, the sampling ratio adjust-
ment method cannot respond to the sudden dynamics and reduce
the number of sampled tra�c spikes.

Figure 6: Sampling Tra�c vs. Sampling Ratio

5.2 Monitoring Overhead
In this paper, we consider the number of FlowStatisticsRequest
messages sent from the controller to be the network overhead
metrics, and the overhead is recorded at the timeout expiration
events. And we count only once for �ows at the same timeout
since the controller can batch the FlowStatisticsRequest messages
together to mitigate the monitoring overhead.

Figure 7: Sampling Tra�c vs. Sampling Ratio
Figure 7 shows the monitoring overhead of the periodic polling

scheme and our proposed algorithm. The periodic polling scheme
polls all the active �ows at �xed interval resulting in a large number
of messages sent to the switches. While our proposed algorithm
reduces the number of messages by increasing the polling interval
for a majority of �ows, thereby reducing the network overhead.
However, the adaptive polling scheme may induce larger overhead
on the network than periodic polling scheme. For instance, from 0
to 5s, the number of �ows is small and the tra�c changes dramati-
cally. To adapt to changes, the adaptive polling scheme gradually
decreases the polling interval to fetch accurate statistics. When the



Adaptive Sampling for OpenFlow Network Measurement Methods CFI’17, June 14-16, 2017, Fukuoka, Japan

number of �ows becomes large, only a few of large �ow changes
signi�cantly, so the overall overhead of our proposed algorithm is
much less than periodic polling scheme.

6 CONCLUSIONS
In this paper, an adaptive sampling approach for OpenFlow net-
work measurement is proposed to dynamically adjust the polling
interval for statistics collection. We study the tradeo� between the
monitoring accuracy and the network overhead, and adjust the
polling interval of sending FlowStatisticsRequest messages through
the per-�ow sampled tra�c. We then compare our adaptive polling
scheme with the periodic polling scheme, and the experimental
results show that the proposed method could tremendously re-
duce the monitoring overhead with negligible loss of measurement
accuracy. To further reduce the sampling tra�c, an adaptive sam-
pling method is proposed to tune the sampling ratio for each �ow
independently. We set a higher sampling ratio for large �ows to
minimize the sampling overhead and a lower sampling ratio for
small �ows to avoid losing �ow information. In our ongoing work,
we are going to leverage this adaptive sampling approach to detect
tra�c anomalies like super-spreaders and port scanning activities.

ACKNOWLEDGMENTS
This work was supported by the National High Technology Re-
search and Development Program (863 Program) of China (2015AA
010201); six talent peaks of the high level Talents Project of Jiangsu
province (2011-DZ024); and the CRENET IPv6 Innovation Project
(Project No. NGII20150108).

REFERENCES
[1] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[2] Guang Cheng and Yongning Tang. 2013. Line speed accurate superspreader
identi�cation using dynamic error compensation. Computer Communications 36,
13 (2013), 1460–1470.

[3] Shihabur Rahman Chowdhury, Md Faizul Bari, Reaz Ahmed, and Raouf Boutaba.
2014. Payless: A low cost network monitoring framework for software de�ned
networks. In Network Operations and Management Symposium (NOMS), 2014 IEEE.
IEEE, 1–9.

[4] Nick Du�eld, Carsten Lund, and Mikkel Thorup. 2005. Estimating �ow distribu-
tions from sampled �ow statistics. IEEE/ACM Transactions on Networking (TON)
13, 5 (2005), 933–946.

[5] Open Networking Fundation. 2012. Software-de�ned networking: The new norm
for networks. ONF White Paper 2 (2012), 2–6.

[6] Cynthia A Lowry, William H Woodall, Charles W Champ, and Steven E Rigdon.
1992. A multivariate exponentially weighted moving average control chart.
Technometrics 34, 1 (1992), 46–53.

[7] Peter Phaal. 2002. Packet sampling basics. http://www. s�ow. org/ (2002).
[8] Nor Masri Sahri and Koji Okamura. 2015. Adaptive Anomaly Detection for SDN.

Proceedings of the Asia-Paci�c Advanced Network 40 (2015), 57–63.
[9] Sajad Shirali-Shahreza and Yashar Ganjali. 2013. FleXam: �exible sampling

extension for monitoring and security applications in open�ow. In Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software de�ned networking.
ACM, 167–168.

[10] Zhiyang Su, TingWang, YuXia, andMounir Hamdi. 2015. CeMon: A cost-e�ective
�ow monitoring system in software de�ned networks. Computer Networks 92
(2015), 101–115.

[11] Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali. 2010. OpenTM: tra�c
matrix estimator for OpenFlow networks. In International Conference on Passive
and Active Network Measurement. Springer, 201–210.

[12] Niels LM Van Adrichem, Christian Doerr, and Fernando A Kuipers. 2014. Open-
netmon: Network monitoring in open�ow software-de�ned networks. InNetwork
Operations and Management Symposium (NOMS), 2014 IEEE. IEEE, 1–8.

[13] Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and
Harsha V Madhyastha. 2013. Flowsense: Monitoring network utilization with
zero measurement cost. In International Conference on Passive and Active Network
Measurement. Springer, 31–41.

[14] Ying Zhang. 2013. An adaptive �ow counting method for anomaly detection in
SDN. In ACM Conference on Emerging NETWORKING Experiments and Technolo-
gies. 25–30.

[15] AP Zhou, G Cheng, and XJ Guo. 2014. High-Speed network tra�c measurement
method. Journal of Software 25, 1 (2014), 135–153.

[16] Qing-Yun ZUO, Ming Chen, Guang-Song ZHAO, Chang-You XING, Guo-Min
ZHANG, and PeiCheng JIANG. 2013. Research on OpenFlow-Based SDN Tech-
nologies [J]. Journal of Software 5 (2013), 015.


