
Adaptive Aggregation Flow Measurement on high
speed Links

Guang Cheng
School of Computer Science & Engineering

Southeast University
Nanjing, P.R.China, 210096

gcheng@njnet.edu.cn

Jian Gong
School of Computer Science & Engineering

Southeast University
Nanjing, P.R.China, 210096

jgong@njnet.edu.cn

Abstract— While network traffic may be characterized by many
different criteria, it is ease to aggregate traffic along one
dimension at a time. Unfortunately, by aggregating traffic along
any single dimension, the network manager inevitably loses some
interesting information. While the network manager can expose
this structure by using finer grained representations, such as
flows, he then must manage the excessive detail contained in such
a representation. We define our traffic clusters in terms of the
five fields typically used to define a fine-grained flow: source IP
address, destination IP address, protocol, source port and
destination port. Unlike others flow monitoring methods, such as
NetFlow and ANF, we only keep the heavy-tailed flows and
sampled short flows on a non-uniform sampling method with the
flow length. The aggregation traffic can be estimated by these
sampled flows and can keep the estimated accuracy at the same
time. Experiment studies show our approach can significantly
improve both the accuracy and efficiency in network aggregation
flow monitoring comparing to other existing approaches.

Keywords-Aggregation Flow, Adaptive Monitoring, Removal
Flows

I. INTRODUCTION

Aggregation flow monitoring and analysis is crucial for
many network applications, such as network planning, network
management, and network security applications [1]. Network
packets passing through the monitoring system can be
classified into flows based on their header 5-tuple information,
which can be further analyzed to present more significant
implications. Aggregation functionality may turn useful in case
of any anomaly (e.g., DoS attack, Worm spreading, etc) [2]
where suddenly a lot of small flows are generated. NetFlow [3],
implemented in Cisco routers, can generate and output flow
records, and keep a flow cache into memory as flow records to
describe the passing traffic. Current flow monitoring
approaches, which require recording flow records into memory
to keep the flow status, usually run into problems if the number
of flows too huge to hold in the memory. Several approaches
have been proposed to address this challenge. However they
either lack flexibility in adapting to greatly varying network
traffic (e.g. sNetFlow), or require intensive computing
resources (e.g. ANF). Current countermeasures are (1)
NetFlow: if the flow cache fill up, then depending on the
defined behavior the result could be: 1a) if discarding new
flows when the cache is full, legitimate new flows (even big
ones) will not be accounted. 1b) if exporting aggressively non-

terminated flows to make room for new ones, the other
components in the system (e.g. collector) may get into trouble
because of the flow record explosion. 2) Elephant flow
detection: it will preserve "good” flows however the “bad”
ones may pass unobserved. 3) Adaptive flow sampling: will
ensure that the flow cache exporting rate remains stable, but
accuracy in accounting legitimate flows will decrease anyway.
Ant it brings complexity into the flow monitor.

In this paper, we propose a novel approach to tackle this
issue by using an aggregation flow measurement (AFM)
scheme to make the monitoring system self-adjustable to the
varying monitored traffic. By caching estimating values rather
than actual measured value, thus AFM can use multiple
sampling rates to adapt the traffic change, and we can also keep
the measured accuracy of each sampling rate and don’t waste
the measured resource during a high sampling rate. We also
propose one non-uniform flow management policy that can
control the flow cache size and keep the estimated accuracy at
the same time.

The paper is organized as follows: we discussed the related
work, and provide an introduction to NetFlow and ANF in
Section 2. In Section 3, we elaborate our approach with
detailed discussion on the corresponding algorithms.
Comprehensive experiments are conducted and the results are
discussed in Section4. Section 5 concludes this work and
shows some potential improvement on this work.

II. RELATED WORK
With the increasing demands from various areas such as

network security, network flow monitoring has gained more
and more attentions by some research communities. The IETF
Packet Sampling working group (PSAMP) [4] is chartered to
define a standard set of capabilities for network elements to
sample subsets of packets statistically. Chaudhuri [5] has
proved that sampling can be compensated for the estimated
traffic in packets or bytes. Kumar [6] proposed a novel SCBF
that performs per-flow counting without maintaining per-flow
state in and an algorithm for estimation of flow size distribution
[7]. This is followed by [8] in which the flow distribution is
inferred from the sampled statistics. Duffield [9] studied the
statistical properties of packet-level sampling using real-world
Internet traffic traces, and developed a simple model to predict
both the export rate of flow packet-sampled flow statistics and
the number of active flows. The measured numbers of flows

1-4244-2424-5/08/$20.00 ©2008 IEEE ICCS 2008 559

and the distribution of their lengths can been used to evaluate
gains in deployment of web proxies [10], and determine
thresholds for setting up connections in flow-switched
networks [11]. Ribeiro [12] take a systematic approach to
understand the contributions that different types of information
within sample packets have on the quality of flow-level
estimates. There are measured solutions for improving
estimated precision of measured flow. Estan [13] proposed a
sample and hold algorithms for identifying the large flows, and
they also described the optimization of early removal further
improve the accuracy. Ashwin Lall [14] also uses a similar
sample and hold algorithm that after one item is sampled, an
exact count is maintained for it. Raspall [15] present a Shared-
State Sampling algorithm to detect a large of flows in the high-
speed networks, which is a generation of sample and hold
algorithm.

Cisco’s NetFlow [3] is an open but proprietary network
protocol developed by Cisco Systems to run on Cisco IOS-
enabled equipment for collecting IP traffic information. In the
case of NetFlow, Cisco uses the 5-tuple definition, where a
flow is defined as a unidirectional sequence of packets all
sharing all of the following 5 values: Source IP, Destination IP,
source port, destination port, and protocol. Maintaining
NetFlow data can be computationally expensive for the router
and burden the router's CPU to the point where it runs out of
capacity. To avoid problems caused by router CPU exhaustion,
Cisco provides "Sampled NetFlow" Rather than looking at
every packet to maintain NetFlow records, the router looks at
every nth packet, where n can be configured or it is a randomly
selecting interval. When using sampled Netflow records, we
can estimate the result by multiplying n, but it will bring into
some error for the sampling rate.

However Sampled NetFlow suffers from two problems: (1)
the number of flow cached in system memory could be
significantly increasing if the monitored network hit by certain
burst traffic such as DDoS; (2) pre-selected sampling rate
cannot be adapted to the varying network traffic. Estan [16] has
proposed a family of bitmap algorithms for counting active
flows and an adaptive NetFlow (ANF) was proposed. The
adaptive NetFlow algorithm keeps resource within fixed limits,
and uses renormalization to reduce the number of NetFlow
records using a new sampling rate. This algorithm divides
traffic stream into some fixed time interval bins. However, the
algorithm has the following limitations: (1) it consumes a lot of
CPU resource during renormalization because it needs
repeatedly to analyze previously collected flow records that
have already been processed and stored in system memory; (2)
it inevitably loses monitoring accuracy due to static sampling
rate; (3) it has to frequently adjust its sampling rate to adapt to
varying traffic flow statistics.

All of these sampling techniques are valuable to study our
algorithm. Obviously, there is a trade-off between monitoring
accuracy and limited system resources (e.g. memory size, CPU
speed). How to select an optimal sampling rate to achieve
satisfactory accuracy with given system resource is a
significant challenge. In this paper, we will try to tackle this
issue.

III. ADAPTIVE AGGREGATION FLOW
MEASUREMENT SYSTEM

Measured traffic must solve two problems: to improve
estimated precision and to reduce measured resources. It is very
difficult to configure the sampling rate to adapt the CPU and
memory resource. We set two different sampling processes to
control CPU resource and memory resource respectively in our
AFM algorithm. A sampling process controls the number of
packet through the CPU and consumption of CPU resource,
and we name the sampling process as CPU sampling process,
and call the sampling rate to CPU sampling rate. Packets
through CPU will be aggregated into flows and recorded into a
flow memory. The number of flow decides the size of flow
memory, so we use another sampling process to sample these
packets to control the number of short flow, and save the size
of flow memory. We call this sampling process to memory
sampling process, and name the sampling rate as memory
sampling rate. If a flow is sampled into the flow memory, then
its following packets are sampled that won’t impart the size of
flow memory, only changes the estimated precision of
measured flow. The memory sampling process is flow sample
and hold algorithm.

During the measuring traffic, if the traffic is increasing, and
it is too heavy to have enough CPU resource, then the CPU
sampling rate can be adjusted to a small sampling rate to adapt
the traffic change. If the traffic is decreasing, the CPU has
space resource to process more traffic, and then the CPU
sampling rate can be increased to collect more traffic. Our
algorithm can adjust the CPU sampling rate according to the
traffic change, so multiple CPU sampling rates are used during
the measured process. We record the estimated value when
each packet is measured instead of the measured value directly,
so the entry value in the flow memory is equal to the estimated
value of measured flow.

The Flow Sample & Hold process (FSH) updates flow
information by considering new received packets. FSH adopts
a flow sample & hold mechanism, which records all packets
information which belong to a existed flows, and then updates
the corresponding flow entries. Otherwise, the packets are
sampled with a probability and new entries will be created
accordingly. In this manner, the heavy-tailed flows will be
given higher priority, which also contain more information.
Thus, this approach can maximize flow information and
estimation accuracy with given flow cache size. The method
takes removal policy which removes small flows to control the
total number of flows in the flow cache.

We show the architecture of the system in the figure1. The
architecture consists of three processes: CPU Sampling Process,
Sample & Hold Process, and Removal Process. In the figure 1,
all packets are sample by one out of nth, and all sampled
packets are processed by the sample & hold process. If there is
a flow entry in the flow memory, then the flow entry is
updated, otherwise the packet is sampled again using one out of
mth to decide whether a new flow is created. If the number of
flows in the flow memory is larger than a threshold R, then a
removal algorithm will be started up to remove some flow
entries from the flow memory.

 560

All
Packets

Every nth

Every mth

No

Flow Cache

No

Yes

Yes
Adjust Memory

Update
 entries

Create
new entry

Has Entry

Flow
Numbers

X>R

increase
m

reduce
entries

CPU
Changed

Yes
Adjust n

No

CPU SAMPLING PROCESS SAMPLE & HOLD PROCESS

REMOVAL PROCESS

Figure 1. The Architecture of AFM

A. CPU Sampling Process
CPU sampling process is a random sampling process, and

let sampling ratio p is equal to 1/n, which is 1 in n packets. A
packet is sampled with probability p. Therefore to obtain an
unbiased estimator N̂ of the number of packets on the sample
traffic, we should statistically compensate for the fact that with
probability 1-p, the packet will miss due to the sampling
process. It is intuitive that if we add 1/p=n to N̂ , the resulting
estimator is unbiased. Suppose in a measurement epoch, we
sample K packets with sampling ratio pi, { Kippkt ii ,1,, = }.
The output of estimated packets, which is an unbiased

estimator of sampling traffic
=

==
n

i ipp
nN

1

1ˆ . 1/pi is an

unbiased estimator of each measured value. If we use 1/pi the
measured packet, we can record the estimated values with
different sampling ratio, and its standard deviation is 1/pi.
According to the estimator N̂ , we can get the standard

deviation of N, SD(N)=
=

n

i
ip

1

2/1 .

B. Update Flow Cache
We use a sample & hold algorithm to update flow cache.

After a flow is recorded, all its follow packets are held. The
memory sampling ratio is 1 in N, that is p = 1/N. supposed that
a flow f is sampled, there are x packets which have been
missed, when the first packet in flow f is sampled, so x obey
geometric probability distribution, and its probability
distribution is xpp)1(− , so E(x)=1/p-1, D(x)=(1-p)/p2. When
the first packet in flow f is collected, 1/p packets have passed,
so we use 1/p as the initial value of flow f records rather than 1.
Its standard deviation SD(x)=sqrt(1-p)/p. As soon as the first
packet in flow f is collected, all following packets in flow f will
be recorded in flow f entry. Let the following packets is c, then
the value in flow f entry is equal to c+1/p. So the standard
deviation of flow f is SD(x)=sqrt(1-p)/p.

C. Remove Flow Entries from the Flow Cach
When the flow cache is full, we should remove some flow

entries to have some spaces to accept the future flows. Long

flow can record more packet information than that of small
flow. If we can keep more long flows in the flow cache then we
can get more accurate estimated value. So the removal policy is
to keep more long flows and, on the other hand, we should
keep some parts of small flows to estimate the remove small
flows. These removal flows only contain small packets, so the
estimated error of small flows can’t affect the aggregation
flows too much. In this paper, the flow cache is divided into the
kept flow cache and the removal flow cache. We can configure
more flow cache for the recorded flow cache than for the
removal flow cache. Such as the recorded flow cache is set
95% of the total size of the flow cache, and removal flow cache
is only set 5% of the flow cache size.

Long flow can record more packet information than small
flow, so we remove all flows smaller than a threshold. When
the number of flow entries in the recorded flow cache is over a
predefined threshold B%M, where M is the size of flow cache,
the removal process is triggered. After the removal process is
over, the number of flow entries in the recorded flow cache
needs less than F%M, so the number of removal flow entries is
(B-F)%M at least. In the removal process, a computed
threshold H assures that the number of flows smaller than H is
over (B-F)%M. Let the length distribution of flow entries in the
recorded flow cache be f(x), we can find a H, that

MFBxf
H

i
i %)%()(

1
−≥

=
, and at the same time

MFBxf
H

i
i %)%()(

1

1
−<

−

=
. The system may take long time to

remove a predefined number of flows if we have to go through
the entire flow cache multiple times. Here we introduce a quick
search algorithm. We set a k size dimension K which is
updated if f the flow cache is updated. The index in the
dimension K is the length of flow in the flow cache. If we want
to set H as the removal threshold, according to the dimension
K, the length of removal flow can be computed. If the k is too

small, it may be
=

>
k

i
iKH

1
][, then we can set d = k+1, and

loop the flow cache to remove the threshold H flows.

Let the size of removal flow cache be K, the size of
removal flows be L, and current sampling rate be 1 in N, the
sampling rate 1 in N need to be adjusted to 1 in M to put both
all removal flows just now and all flows in removal flow cache
into the removal flow cache based on the new sampling rate 1
in M, M>N. Let the size of a flow in the removal flow cache be
x. after flow x is sampled again by 1 in M, its values is

MNx /⋅ . In the removal memory cache, a integer only is
recorded, so sampling x with probability MNx /⋅ is

MNxMNx // ⋅−⋅ , and sampling x with the probability
MNxMNx // ⋅−⋅ is MNx /⋅ . The sampled value of a

flow y in the removal flows from the recorded flow cache is
My / with the probability MyMy // − , and My /

with probability My / .

It costs a lot of CPU resource to compute a random value
for each flow entry. In this paper, we give a simple method to
compute the random value. Before the system begins, an initial

 561

random value, “rand”, is produced. Let the sampled value of a
flow be z, z=y/M or MNx /⋅ , and its integer be z . If (z-

z)+rand is larger than or equal to 1, then the sampled value
is z +1, and one new random value is rand= (z- z)+rand-1.

If (z- z)+rand is less than 1, then the sampled value is set to
z , and the new random value is set to rand= (z- z)+rand.

The new random value will be used in the next random
computation. In this way, we need only to compute a random
value by a random function at the initial period, and the
following random value can be obtained by some addition and
subtraction operations.

D. Performance Analysis
Let the size of flow cache M, F be the size of the recorded

flow cache, and G be the size of the removal flow cache. F and
G are also belong to M, and F+G<M. The algorithm also leaves
M-(F+G) spaces to record the coming packets during the
system removes some entries from the recorded flow cache.
Such as F = 90%*M, G=5%*M, and we also have another
5%*M to record the coming flow during removal entries.

During removal flow entries, supposed a removal threshold
H, if the size of a flow is less than H, then the flow will be
removed, and renormalized to record into removal flow cache.
A flow is larger than H, then it will be kept in the recorded
flow cache. Let memory flow rate be p, and c is measured the
count of flow s. 1/p can compensate for the missed packets, so
the estimated packets of flow s is c+1/p, and its standard
deviation is 1/p.

These removal flow entries in the recorded flow cache and
these flow entries in the removal flow cache are renormalized
and all sampled entries are recorded into the removal flow
cache. Suppose the current sampling rate in the removal flow
cache be pold, and the new sampling rate be pnew. All removal
flows from recorded flow cache are computed by x*pnew, and
all flows in the removal flow cache are sampled again by
x*pnew/ pold.

Let the sampling rate which the first packet in flow s is
sampled from sample & hold be p, c be the measured value, so
the estimated value is x=(c-1)+1/p. If we sample these removal
flows from the recorded flow cache randomly by sampling rate
pnew, and re-sample all flows in removal flow cache by
sampling rate pnew/ pold. Let pnew/ pold or pnew be q, then the
sampling packet count obeys binomial distribution with mean
qx, and variance q(1-q)x, so the new estimator is
k=qx=q(c+1/p)=qc+q/p, and standard deviation is D(k)=q(1-
q)c+q(1-q)/p2. Let the sampled value be k, k/q be the estimator
of x, so we can obtain the standard deviation in equation (1)

qp
q

q
cq

qp
qq

q
cqqxD 2222

)1()1()1()1()(−+−=−+−= (1)

Let m be the removal threshold in the recorded flow cache,
so p<=1/m

qm
mc

qmq
c

qm
q

q
cqxD

⋅
+⋅<+<−+−≤ 2

2

22)/1(
1)/1(

)/1(
1

)/1(
1)1()(

q
mm

qm
mxD

2

2)/1(
1)/1()(+=

⋅
+< (2)

Let an aggregation flow z has f flows in the recorded flow
cache, and n flows in the removal flow cache, and CPU
sampling rate be pCPU. We can obtain an estimator of the
aggregation flows z in the equation (3), and its standard
deviation in the equation (4).

==
+=

n

i
newCPUiCPU

f

i
i ppypxz

11
//ˆ (3)

==

++=
n

i new

f

i
i

CPU
z p

mmp
p

m
1

2

1

2/11 (4)

Where pi is the memory sampling rate when the first packet
in flow i is sampled, but it is hard to remember all pi. pcur is the
last memory sampling rate in the measuring epoch, so we know
pi<=1/pcur. We can get an approximate standard deviation
equation (5)

newcurCPU
z p

mmn
p

f
p

m)(1 2

2
++= (5)

Let the size of every flow in the recorded flow cache be xi,
and we know 1/pi<=xi. If xi < 1/pcur, then 1/xi is closer pi than
pcur. If 1/xi is replaced as pi, then we can get more approximate
value than the equation (5). Equation (6) is the more accurate
standard deviation.

new

f

i curiCPU
z p

mmn
pxp

m)(
),min(

11 2

1
22

++=
=

 (6)

IV. EXPERIMENTS
We use a group of packet traces gathered at NLANR [17],

which uses OC192MON hardware to collect data on August
19, 2004, from 13:40pm to 14:40pm. These traces sketch is
displayed in table 1. Estan’s ANF algorithm has the same
estimator precision with the Sampled NetFlow algorithm,
except that Sampled NetFlow can’t change its sampling rate, so
in the experiments, we compare only ANF [16] with the AFM.

In the table 2, the first column ANF_0.1 is the measured
error of ANF aggregation flows whose size is larger than 0.1%
of total traffic, and AFM _0.1 is the measured error of AFM
aggregation flow whose size is larger than 0.1% of total traffic.
Both ANF_0.01 and AFM_0.01 are the aggregation flow larger
than 0.01 of the total traffic. The first row 5% percentile is the
error value which is located in the 5% percentile of all the
errors. And 25% percentile, 50% percentile, 75% percentile,
and 95% percentile all have the same meaning. The size of
flow cache is set to 8192.

The table 2 shows us that the measured errors of AFM are
better than that of ANF. Before we begin to examine the
performance of different algorithms, we define one error
metric. The errori metric in the equation (7) values the
estimated error of the ith aggregation flow, where Xi is the

 562

actual packet numbers of the ith aggregation flow, and iX̂ is
the estimated value of the ith aggregation flow.

Table 1. Traces Used in This Experiment
No. Time File Size #Packets #Flows
1 2004/08/19 13:40 173MB 8434885 144813
2 2004/08/19 13:50 154MB 6922629 146665
3 2004/08/19 14:00 172MB 8251311 184213
4 2004/08/19 14:10 157MB 7111907 154750
5 2004/08/19 14:20 161MB 7388868 140297
6 2004/08/19 14:30 176MB 8560571 143341
7 2004/08/19 14:40 162MB 7527445 149196

Table2. Error Comparison of Aggregation Flows
Percentile 5% 25% 50% 75% 95%
ANF_0.1 0.0044 0.0221 0.0514 0.0992 0.1975
AFM-0.1 0.0005 0.0027 0.0071 0.0161 0.0571

ANF_0.01 0.0157 0.0841 0.1830 0.3349 0.6364
AFM-0.01 0.0042 0.0213 0.0576 0.1302 0.4314

%100/)ˆ(×−= iiii XXXerror (7)

The measured error of all application packets, which is
larger than 0.1% of the total packets, is compared among the
two algorithms in the figure 2(a), and errors which are larger
than 0.01%, and less than 0.1%, are showed in the figure 2(b).
In this experiment, we let flow cache be 8192, and experiment
data is the first team data in the table 1, and only analyze the
SPORT aggregation flows whose size is larger than 0.1% of the
total packets. In the figure, X axis means SPORT number and
Y axis in the two figures means relative estimated error. The
figure 2 show that these points which are belong to AFM are
closer X axis than the ANF algorithm, so the measured error of
AFM is better than the ANF algorithm.

0
0.1
0.2
0.3
0.4
0.5

0 20000 40000 60000

ANF

AFM

0
0.2
0.4
0.6
0.8

1
1.2

0 20000 40000 60000

ANF
AFM

 (a) (b)

Figure 2(a) Error of Aggregation Flows Larger than 0.1% Total
Packets. Figure 2(b) Error of Aggregation Flows Between
0.01% and 0.1% Total Packets.

V. CONCLUSION
This paper presents an AFM method to detect flow

information, which includes CPU sample process, flow sample
& hold process, and flow removal process. We can control the
flow number in the flow cache by the flow removal process,
and sample & hold process can record more packets into the
flow cache. In this paper, we propose one removal process,
which removes small-flows directly from the recorded flow
cache, and records removal flows into the removal flow cache.
The removal process can be easy to manage the size of the flow
cache, and estimate aggregation flow accurately. We use
NLANR data to compare the performance the AFM algorithms
with different removal process respectively, and the Estan’s

ANF algorithm, and analyze the SPORT aggregation flows
over 0.1% and between 0.1%~0.01% the total traffic. The
experiment shows that the AFM method has better precision
than the ANF algorithm under the same flow memory size and
configures, and the accuracy of the AFM algorithm is better
than that of ANF algorithm with the same system resources.

ACKNOWLEDGMENT

This work has been supported by the National Grand
Fundamental Research 973 program of China under Grant No.
2009CB320505, the Excellent Youth Teacher of Southeast
University Program under Grant No. 4009001018, and the Free
Research Program of Key Lab of Computer Network in
Guangdong Province under Grant No. CCNL 200706 and the
2008 Natural Science Fundamental Program of Jiangsu
Province under Grant No. BK2008288.

REFERENCES

[1] Xin Li, Fang Bian, Mark Crovella, etc. Detection and Identification of
Network Anomalis Using Sketch Subspaces, IMC Oct. 2006

[2] Anukool Lakhina, Mark Crovella, Christophe Diot, Mining Anomalies
Using Traffic Feature Distributions, In SIGCOMM, Aug. 2005.

[3] Cisco IOS NetFlow Introduction, http://www.cisco.com/en/US/products
/ps6601/products_ios_protocol_group_home.html

[4] Packet Sampling (PSAMP), http://www.ietf.org/html.charters/psamp-
charter.html, 2007.1.

[5] S. Chaudhuri, R. Motwani, and V. Narasayya. Random Sampling for
histogram construction: How much is enough? In Proceedings of the
ACM SIGMOD, 1998.

[6] Abhishek Kumar, Jun Xu, Li Li, and Jia Wang, Space Code Bloom
Filter for Efficient Traffic Flow Measurement, ACM/USENIX IMC,
Miami, FL, October 2003.

[7] Abhishek Kumar, Minho Sung, Jun (Jim) Xu and Jia Wang, Data
streaming algorithms for efficient and accurate estimation of flow size
distribution, ACM SIGMETRICS 2004.

[8] Duffield, N.G., Lund, C. , Thorup, M.: Estimating Flow Distributions
from Sampled Flow Statistics. ACM SIGCOMM . 2003,
Karlsruhe,Germany. August 25-29. 325-336.

[9] Duffield, N.G., Lund, C., Thorup, M.: Properties and Prediction of Flow
Statistics from Sampled Packet Streams, ACM SIGCOMM IMW 2002,
November 6-8, 2002.

[10] Feldmann, A. , Caceres, R. , Douglis, F. , Glass, G., Rabinovich, M.:
Performance of Web Proxy Caching in Heterogeneous Bandwidth
Environments, IEEE INFOCOM 99.

[11] Feldmann, A., Rexford, J., and C¡äaceres, R.: Efficient Policies for
Carrying Web Traffic over Flow-Switched Networks, IEEE/ACM
Transactions on Networking, vol. 6, no.6, pp.673-685, December 1998.

[12] Ribeiro, B., Towsley D., Ye, T., Bolot, J. Fisher Information of Sampled
Packets: an Application to Flow Size Estimation, IMC’ 06, Oct. 25-27,
2006, Rio de Janeiro, Brazil.

[13] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. In SIGCOMM, Aug. 2002.

[14] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, etc., Data streaming
algorithms for estimating entropy of network traffic, ACM
SIGMETRICS Performance Evaluation Review, Vol34 ,No.1, June
2006.

[15] Frederic Raspall, Sebastia Sallent, Josep Yufera, Shared State Sampling,
in Proceeding of IMC Oct. 2006.

[16] C. Estan, Ken Keys, David Moore, George Varghese, Building a Better
Netflow, SIGCOMM, August 2004

[17] Abilene-V Trace Data, http://pma.nlanr.net/Special/ipls5.htm

 563

