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Abstract— While network traffic may be characterized by many 
different criteria, it is ease to aggregate traffic along one 
dimension at a time. Unfortunately, by aggregating traffic along 
any single dimension, the network manager inevitably loses some 
interesting information. While the network manager can expose 
this structure by using finer grained representations, such as 
flows, he then must manage the excessive detail contained in such 
a representation. We define our traffic clusters in terms of the 
five fields typically used to define a fine-grained flow: source IP 
address, destination IP address, protocol, source port and 
destination port. Unlike others flow monitoring methods, such as 
NetFlow and ANF, we only keep the heavy-tailed flows and 
sampled short flows on a non-uniform sampling method with the 
flow length. The aggregation traffic can be estimated by these 
sampled flows and can keep the estimated accuracy at the same 
time. Experiment studies show our approach can significantly 
improve both the accuracy and efficiency in network aggregation 
flow monitoring comparing to other existing approaches. 

Keywords-Aggregation Flow, Adaptive Monitoring, Removal 
Flows 

I. INTRODUCTION

Aggregation flow monitoring and analysis is crucial for 
many network applications, such as network planning, network 
management, and network security applications [1]. Network 
packets passing through the monitoring system can be 
classified into flows based on their header 5-tuple information, 
which can be further analyzed to present more significant 
implications. Aggregation functionality may turn useful in case 
of any anomaly (e.g., DoS attack, Worm spreading, etc) [2] 
where suddenly a lot of small flows are generated. NetFlow [3], 
implemented in Cisco routers, can generate and output flow 
records, and keep a flow cache into memory as flow records to 
describe the passing traffic. Current flow monitoring 
approaches, which require recording flow records into memory 
to keep the flow status, usually run into problems if the number 
of flows too huge to hold in the memory. Several approaches 
have been proposed to address this challenge. However they 
either lack flexibility in adapting to greatly varying network 
traffic (e.g. sNetFlow), or require intensive computing 
resources (e.g. ANF). Current countermeasures are (1) 
NetFlow: if the flow cache fill up, then depending on the 
defined behavior the result could be: 1a) if discarding new 
flows when the cache is full, legitimate new flows (even big 
ones) will not be accounted. 1b) if exporting aggressively non-

terminated flows to make room for new ones, the other 
components in the system (e.g. collector) may get into trouble 
because of the flow record explosion. 2) Elephant flow 
detection: it will preserve "good” flows however the “bad” 
ones may pass unobserved. 3) Adaptive flow sampling: will 
ensure that the flow cache exporting rate remains stable, but 
accuracy in accounting legitimate flows will decrease anyway. 
Ant it brings complexity into the flow monitor. 

In this paper, we propose a novel approach to tackle this 
issue by using an aggregation flow measurement (AFM) 
scheme to make the monitoring system self-adjustable to the 
varying monitored traffic. By caching estimating values rather 
than actual measured value, thus AFM can use multiple 
sampling rates to adapt the traffic change, and we can also keep 
the measured accuracy of each sampling rate and don’t waste 
the measured resource during a high sampling rate. We also 
propose one non-uniform flow management policy that can 
control the flow cache size and keep the estimated accuracy at 
the same time. 

The paper is organized as follows: we discussed the related 
work, and provide an introduction to NetFlow and ANF in 
Section 2. In Section 3, we elaborate our approach with 
detailed discussion on the corresponding algorithms. 
Comprehensive experiments are conducted and the results are 
discussed in Section4. Section 5 concludes this work and 
shows some potential improvement on this work. 

II. RELATED WORK 
With the increasing demands from various areas such as 

network security, network flow monitoring has gained more 
and more attentions by some research communities. The IETF 
Packet Sampling working group (PSAMP) [4] is chartered to 
define a standard set of capabilities for network elements to 
sample subsets of packets statistically. Chaudhuri [5] has 
proved that sampling can be compensated for the estimated 
traffic in packets or bytes. Kumar [6] proposed a novel SCBF 
that performs per-flow counting without maintaining per-flow 
state in and an algorithm for estimation of flow size distribution 
[7]. This is followed by [8] in which the flow distribution is 
inferred from the sampled statistics. Duffield [9] studied the 
statistical properties of packet-level sampling using real-world 
Internet traffic traces, and developed a simple model to predict 
both the export rate of flow packet-sampled flow statistics and 
the number of active flows. The measured numbers of flows 
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and the distribution of their lengths can been used to evaluate 
gains in deployment of web proxies [10], and determine 
thresholds for setting up connections in flow-switched 
networks [11]. Ribeiro [12] take a systematic approach to 
understand the contributions that different types of information 
within sample packets have on the quality of flow-level 
estimates. There are measured solutions for improving 
estimated precision of measured flow. Estan [13] proposed a 
sample and hold algorithms for identifying the large flows, and 
they also described the optimization of early removal further 
improve the accuracy. Ashwin Lall [14] also uses a similar 
sample and hold algorithm that after one item is sampled, an 
exact count is maintained for it. Raspall [15] present a Shared-
State Sampling algorithm to detect a large of flows in the high-
speed networks, which is a generation of sample and hold 
algorithm. 

Cisco’s NetFlow [3] is an open but proprietary network 
protocol developed by Cisco Systems to run on Cisco IOS-
enabled equipment for collecting IP traffic information. In the 
case of NetFlow, Cisco uses the 5-tuple definition, where a 
flow is defined as a unidirectional sequence of packets all 
sharing all of the following 5 values: Source IP, Destination IP, 
source port, destination port, and protocol. Maintaining 
NetFlow data can be computationally expensive for the router 
and burden the router's CPU to the point where it runs out of 
capacity. To avoid problems caused by router CPU exhaustion, 
Cisco provides "Sampled NetFlow" Rather than looking at 
every packet to maintain NetFlow records, the router looks at 
every nth packet, where n can be configured or it is a randomly 
selecting interval. When using sampled Netflow records, we 
can estimate the result by multiplying n, but it will bring into 
some error for the sampling rate.  

However Sampled NetFlow suffers from two problems: (1) 
the number of flow cached in system memory could be 
significantly increasing if the monitored network hit by certain 
burst traffic such as DDoS; (2) pre-selected sampling rate 
cannot be adapted to the varying network traffic. Estan [16] has 
proposed a family of bitmap algorithms for counting active 
flows and an adaptive NetFlow (ANF) was proposed. The 
adaptive NetFlow algorithm keeps resource within fixed limits, 
and uses renormalization to reduce the number of NetFlow 
records using a new sampling rate. This algorithm divides 
traffic stream into some fixed time interval bins. However, the 
algorithm has the following limitations: (1) it consumes a lot of 
CPU resource during renormalization because it needs 
repeatedly to analyze previously collected flow records that 
have already been processed and stored in system memory; (2) 
it inevitably loses monitoring accuracy due to static sampling 
rate; (3) it has to frequently adjust its sampling rate to adapt to 
varying traffic flow statistics. 

All of these sampling techniques are valuable to study our 
algorithm. Obviously, there is a trade-off between monitoring 
accuracy and limited system resources (e.g. memory size, CPU 
speed). How to select an optimal sampling rate to achieve 
satisfactory accuracy with given system resource is a 
significant challenge. In this paper, we will try to tackle this 
issue. 

III. ADAPTIVE AGGREGATION FLOW
MEASUREMENT SYSTEM 

Measured traffic must solve two problems: to improve 
estimated precision and to reduce measured resources. It is very 
difficult to configure the sampling rate to adapt the CPU and 
memory resource. We set two different sampling processes to 
control CPU resource and memory resource respectively in our 
AFM algorithm. A sampling process controls the number of 
packet through the CPU and consumption of CPU resource, 
and we name the sampling process as CPU sampling process, 
and call the sampling rate to CPU sampling rate. Packets 
through CPU will be aggregated into flows and recorded into a 
flow memory. The number of flow decides the size of flow 
memory, so we use another sampling process to sample these 
packets to control the number of short flow, and save the size 
of flow memory. We call this sampling process to memory 
sampling process, and name the sampling rate as memory 
sampling rate. If a flow is sampled into the flow memory, then 
its following packets are sampled that won’t impart the size of 
flow memory, only changes the estimated precision of 
measured flow. The memory sampling process is flow sample 
and hold algorithm.  

During the measuring traffic, if the traffic is increasing, and 
it is too heavy to have enough CPU resource, then the CPU 
sampling rate can be adjusted to a small sampling rate to adapt 
the traffic change. If the traffic is decreasing, the CPU has 
space resource to process more traffic, and then the CPU 
sampling rate can be increased to collect more traffic. Our 
algorithm can adjust the CPU sampling rate according to the 
traffic change, so multiple CPU sampling rates are used during 
the measured process. We record the estimated value when 
each packet is measured instead of the measured value directly, 
so the entry value in the flow memory is equal to the estimated 
value of measured flow.  

The Flow Sample & Hold process (FSH) updates flow 
information by considering new received packets. FSH adopts 
a flow sample & hold mechanism, which records all packets 
information which belong to a existed flows, and then updates 
the corresponding flow entries. Otherwise, the packets are 
sampled with a probability and new entries will be created 
accordingly. In this manner, the heavy-tailed flows will be 
given higher priority, which also contain more information. 
Thus, this approach can maximize flow information and 
estimation accuracy with given flow cache size. The method 
takes removal policy which removes small flows to control the 
total number of flows in the flow cache.   

We show the architecture of the system in the figure1. The 
architecture consists of three processes: CPU Sampling Process, 
Sample & Hold Process, and Removal Process. In the figure 1, 
all packets are sample by one out of nth, and all sampled 
packets are processed by the sample & hold process. If there is 
a flow entry in the flow memory, then the flow entry is 
updated, otherwise the packet is sampled again using one out of 
mth to decide whether a new flow is created. If the number of 
flows in the flow memory is larger than a threshold R, then a 
removal algorithm will be started up to remove some flow 
entries from the flow memory. 
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Figure 1. The Architecture of AFM 

A. CPU Sampling Process 
CPU sampling process is a random sampling process, and 

let sampling ratio p is equal to 1/n, which is 1 in n packets. A 
packet is sampled with probability p. Therefore to obtain an 
unbiased estimator N̂  of the number of packets on the sample 
traffic, we should statistically compensate for the fact that with 
probability 1-p, the packet will miss due to the sampling 
process. It is intuitive that if we add 1/p=n to N̂ , the resulting 
estimator is unbiased. Suppose in a measurement epoch, we 
sample K packets with sampling ratio pi, { Kippkt ii ,1,, = }. 
The output of estimated packets, which is an unbiased 

estimator of sampling traffic 
=

==
n

i ipp
nN

1

1ˆ . 1/pi is an 

unbiased estimator of each measured value. If we use 1/pi the 
measured packet, we can record the estimated values with 
different sampling ratio, and its standard deviation is 1/pi.
According to the estimator N̂ , we can get the standard 

deviation of N, SD(N)=
=

n

i
ip

1

2/1 . 

B. Update Flow Cache  
We use a sample & hold algorithm to update flow cache. 

After a flow is recorded, all its follow packets are held. The 
memory sampling ratio is 1 in N, that is p = 1/N. supposed that 
a flow f is sampled, there are x packets which have been 
missed, when the first packet in flow f is sampled, so x obey 
geometric probability distribution, and its probability 
distribution is xpp )1( − , so E(x)=1/p-1, D(x)=(1-p)/p2. When 
the first packet in flow f is collected, 1/p packets have passed, 
so we use 1/p as the initial value of flow f records rather than 1. 
Its standard deviation SD(x)=sqrt(1-p)/p. As soon as the first 
packet in flow f is collected, all following packets in flow f will 
be recorded in flow f entry. Let the following packets is c, then 
the value in flow f entry is equal to c+1/p. So the standard 
deviation of flow f is SD(x)=sqrt(1-p)/p. 

C. Remove Flow Entries from the Flow Cach 
When the flow cache is full, we should remove some flow 

entries to have some spaces to accept the future flows. Long 

flow can record more packet information than that of small 
flow. If we can keep more long flows in the flow cache then we 
can get more accurate estimated value. So the removal policy is 
to keep more long flows and, on the other hand, we should 
keep some parts of small flows to estimate the remove small 
flows. These removal flows only contain small packets, so the 
estimated error of small flows can’t affect the aggregation 
flows too much. In this paper, the flow cache is divided into the 
kept flow cache and the removal flow cache. We can configure 
more flow cache for the recorded flow cache than for the 
removal flow cache. Such as the recorded flow cache is set 
95% of the total size of the flow cache, and removal flow cache 
is only set 5% of the flow cache size.  

Long flow can record more packet information than small 
flow, so we remove all flows smaller than a threshold. When 
the number of flow entries in the recorded flow cache is over a 
predefined threshold B%M, where M is the size of flow cache, 
the removal process is triggered. After the removal process is 
over, the number of flow entries in the recorded flow cache 
needs less than F%M, so the number of removal flow entries is 
(B-F)%M at least. In the removal process, a computed 
threshold H assures that the number of flows smaller than H is 
over (B-F)%M. Let the length distribution of flow entries in the 
recorded flow cache be f(x), we can find a H, that 

MFBxf
H

i
i %)%()(

1
−≥

=
, and at the same time 

MFBxf
H

i
i %)%()(

1

1
−<

−

=
. The system may take long time to 

remove a predefined number of flows if we have to go through 
the entire flow cache multiple times. Here we introduce a quick 
search algorithm. We set a k size dimension K which is 
updated if f the flow cache is updated. The index in the 
dimension K is the length of flow in the flow cache. If we want 
to set H as the removal threshold, according to the dimension 
K, the length of removal flow can be computed. If the k is too 

small, it may be 
=

>
k

i
iKH

1
][ , then we can set d = k+1, and 

loop the flow cache to remove the threshold H flows.  

Let the size of removal flow cache be K, the size of 
removal flows be L, and current sampling rate be 1 in N, the 
sampling rate 1 in N need to be adjusted to 1 in M to put both 
all removal flows just now and all flows in removal flow cache 
into the removal flow cache based on the new sampling rate 1 
in M, M>N. Let the size of a flow in the removal flow cache be 
x. after flow x is sampled again by 1 in M, its values is 

MNx /⋅ . In the removal memory cache, a integer only is 
recorded, so sampling x with probability MNx /⋅  is 

MNxMNx // ⋅−⋅ , and sampling x with the probability 
MNxMNx // ⋅−⋅  is MNx /⋅ . The sampled value of a 

flow y in the removal flows from the recorded flow cache is 
My /  with the probability MyMy // − , and My /

with probability My / .  

It costs a lot of CPU resource to compute a random value 
for each flow entry. In this paper, we give a simple method to 
compute the random value. Before the system begins, an initial 
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random value, “rand”, is produced. Let the sampled value of a 
flow be z, z=y/M or MNx /⋅ , and its integer be z . If (z-

z )+rand is larger than or equal to 1, then the sampled value 
is z +1, and one new random value is rand= (z- z )+rand-1. 

If (z- z )+rand is less than 1, then the sampled value is set to 
z , and the new random value is set to rand= (z- z )+rand. 

The new random value will be used in the next random 
computation. In this way, we need only to compute a random 
value by a random function at the initial period, and the 
following random value can be obtained by some addition and 
subtraction operations. 

D. Performance Analysis 
Let the size of flow cache M, F be the size of the recorded 

flow cache, and G be the size of the removal flow cache. F and 
G are also belong to M, and F+G<M. The algorithm also leaves 
M-(F+G) spaces to record the coming packets during the 
system removes some entries from the recorded flow cache. 
Such as F = 90%*M, G=5%*M, and we also have another 
5%*M to record the coming flow during removal entries.  

During removal flow entries, supposed a removal threshold 
H, if the size of a flow is less than H, then the flow will be 
removed, and renormalized to record into removal flow cache. 
A flow is larger than H, then it will be kept in the recorded 
flow cache. Let memory flow rate be p, and c is measured the 
count of flow s. 1/p can compensate for the missed packets, so 
the estimated packets of flow s is c+1/p, and its standard 
deviation is 1/p.  

These removal flow entries in the recorded flow cache and 
these flow entries in the removal flow cache are renormalized 
and all sampled entries are recorded into the removal flow 
cache. Suppose the current sampling rate in the removal flow 
cache be pold, and the new sampling rate be pnew. All removal 
flows from recorded flow cache are computed by x*pnew, and 
all flows in the removal flow cache are sampled again by 
x*pnew/ pold.

Let the sampling rate which the first packet in flow s is 
sampled from sample & hold be p, c be the measured value, so 
the estimated value is x=(c-1)+1/p. If we sample these removal 
flows from the recorded flow cache randomly by sampling rate 
pnew, and re-sample all flows in removal flow cache by 
sampling rate pnew/ pold. Let pnew/ pold or pnew be q, then the 
sampling packet count obeys binomial distribution with mean 
qx, and variance q(1-q)x, so the new estimator is 
k=qx=q(c+1/p)=qc+q/p, and standard deviation is D(k)=q(1-
q)c+q(1-q)/p2. Let the sampled value be k, k/q be the estimator 
of x, so we can obtain the standard deviation in equation (1) 
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Let m be the removal threshold in the recorded flow cache, 
so p<=1/m 
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Let an aggregation flow z has f flows in the recorded flow 
cache, and n flows in the removal flow cache, and CPU 
sampling rate be pCPU. We can obtain an estimator of the 
aggregation flows z in the equation (3), and its standard 
deviation in the equation (4). 
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Where pi is the memory sampling rate when the first packet 
in flow i is sampled, but it is hard to remember all pi. pcur is the 
last memory sampling rate in the measuring epoch, so we know 
pi<=1/pcur. We can get an approximate standard deviation 
equation (5) 

newcurCPU
z p

mmn
p

f
p

m )(1 2

2
++=    (5) 

Let the size of every flow in the recorded flow cache be xi,
and we know 1/pi<=xi. If xi < 1/pcur, then 1/xi is closer pi than 
pcur. If 1/xi is replaced as pi, then we can get more approximate 
value than the equation (5). Equation (6) is the more accurate 
standard deviation.  
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i curiCPU
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1
22
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IV. EXPERIMENTS 
We use a group of packet traces gathered at NLANR [17], 

which uses OC192MON hardware to collect data on August 
19, 2004, from 13:40pm to 14:40pm. These traces sketch is 
displayed in table 1. Estan’s ANF algorithm has the same 
estimator precision with the Sampled NetFlow algorithm, 
except that Sampled NetFlow can’t change its sampling rate, so 
in the experiments, we compare only ANF [16] with the AFM. 

In the table 2, the first column ANF_0.1 is the measured 
error of ANF aggregation flows whose size is larger than 0.1% 
of total traffic, and AFM _0.1 is the measured error of AFM 
aggregation flow whose size is larger than 0.1% of total traffic. 
Both ANF_0.01 and AFM_0.01 are the aggregation flow larger 
than 0.01 of the total traffic. The first row 5% percentile is the 
error value which is located in the 5% percentile of all the 
errors. And 25% percentile, 50% percentile, 75% percentile, 
and 95% percentile all have the same meaning. The size of 
flow cache is set to 8192. 

The table 2 shows us that the measured errors of AFM are 
better than that of ANF. Before we begin to examine the 
performance of different algorithms, we define one error 
metric. The errori metric in the equation (7) values the 
estimated error of the ith aggregation flow, where Xi is the 
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actual packet numbers of the ith aggregation flow, and iX̂  is 
the estimated value of the ith aggregation flow.  

Table 1. Traces Used in This Experiment 
No. Time File Size #Packets #Flows 
1 2004/08/19 13:40 173MB 8434885 144813 
2 2004/08/19 13:50 154MB 6922629 146665 
3 2004/08/19 14:00 172MB 8251311 184213 
4 2004/08/19 14:10 157MB 7111907 154750 
5 2004/08/19 14:20 161MB 7388868 140297 
6 2004/08/19 14:30 176MB 8560571 143341 
7 2004/08/19 14:40 162MB 7527445 149196 

Table2. Error Comparison of Aggregation Flows  
Percentile 5%  25%  50%  75%  95%  
ANF_0.1 0.0044 0.0221  0.0514  0.0992  0.1975  
AFM-0.1 0.0005 0.0027 0.0071 0.0161 0.0571 

ANF_0.01 0.0157  0.0841  0.1830  0.3349 0.6364 
AFM-0.01 0.0042  0.0213  0.0576  0.1302 0.4314 

%100/)ˆ( ×−= iiii XXXerror    (7) 

The measured error of all application packets, which is 
larger than 0.1% of the total packets, is compared among the 
two algorithms in the figure 2(a), and errors which are larger 
than 0.01%, and less than 0.1%, are showed in the figure 2(b). 
In this experiment, we let flow cache be 8192, and experiment 
data is the first team data in the table 1, and only analyze the 
SPORT aggregation flows whose size is larger than 0.1% of the 
total packets. In the figure, X axis means SPORT number and 
Y axis in the two figures means relative estimated error. The 
figure 2 show that these points which are belong to AFM are 
closer X axis than the ANF algorithm, so the measured error of 
AFM is better than the ANF algorithm. 
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Figure 2(a) Error of Aggregation Flows Larger than 0.1% Total 
Packets. Figure 2(b) Error of Aggregation Flows Between 
0.01% and 0.1% Total Packets. 

V. CONCLUSION 
This paper presents an AFM method to detect flow 

information, which includes CPU sample process, flow sample 
& hold process, and flow removal process. We can control the 
flow number in the flow cache by the flow removal process, 
and sample & hold process can record more packets into the 
flow cache. In this paper, we propose one removal process, 
which removes small-flows directly from the recorded flow 
cache, and records removal flows into the removal flow cache. 
The removal process can be easy to manage the size of the flow 
cache, and estimate aggregation flow accurately. We use 
NLANR data to compare the performance the AFM algorithms 
with different removal process respectively, and the Estan’s 

ANF algorithm, and analyze the SPORT aggregation flows 
over 0.1% and between 0.1%~0.01% the total traffic. The 
experiment shows that the AFM method has better precision 
than the ANF algorithm under the same flow memory size and 
configures, and the accuracy of the AFM algorithm is better 
than that of ANF algorithm with the same system resources.  
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